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An analysis of QCD magnetic moment shows that all infra-red divergences are contained in the coupling constant
renormalization. They are contrelled by the renormalization function 3 for the pure Yang-Mills Field.

A peneral argument shows that the unrenormalized
amplitude for the magnetic moment is infra-red (IR)

- finite in both QED and QCD (Quantum chromody-

namics), but that in QCD the coupling constant renor-
malization introduces IR divergences. I exhibit them
‘by computing the renormalization on the mass-shell,
and show that they are controlled by the same renor-
malization group function § that characterizes the
ultra-violet (UV) behaviour of the pure Yang-Mills
field. If the renormalization is computed off-mass-
shell, the IR poles in 1/e get replaced by the powers
of Ing (dimension = 4 — €, renormalization point = ).
In the off-mass-shell renormalized QCD the infra-red
divergences manifest themselves through logarithmic
corrections to the long range potential, leaving open
a possibility of a (non-perturbative) confinement.
QCD considered here is 2 Yang-Mills theory of
equal mass (m # U} quarks of # colours and & strictly
massless gluons. I shall consider gluonic corrections
to the electromagnetic magnetic moment of a quark.
The quark carries both electric charge and colour, and
scatters in a weak external magnetic field. The gluons
carry only colour. The magnetic moment anomaly is
defined as [1]

M(a,)
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where M = F5(0), 1 +L= 1';1 {0) are computed from
the unrenormatized proper vertex I™(p, ) = F (@)y”
+F2(q2)i((a”“qu)/2m) given by the sum of all one-
particle irreducible quark-quark-photon vertex dia-
grams with internal gluons, Fadeev-Popov ghosts,
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quark loops and quark mass counterterms. The UV
finite expression for the anomaly (1) is obtained by
the charge renormalization

F 3/2
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where Z’s are the usual renormalization constants,
computed as a power Series in a,, (subscript YM refers
to 3-gluon vertex, and superscript F to the Fadeev-
Popov ghost). The Z’s are related by the Taylor-
Slavnov |2, 3] identities (3).

The anomaly (1), expressed in terms of the unrener-
malized coupling constant, is free of infra-red diver-
gences for both QED and QCD (ie., ail ag") are IR
finite). This is particularly easy to demonstrate using
the method for separation of 1R divergences given in
ref. [4]. The method applies to both QED and QCD,
provided that for the gluon subdiagrams the gauge in-
variant subsets are taken together. The analysis is
rather technical, but the result is very intuitive: a
Feynman integral Mg contributing to the magnetic
moment is IR divergent whenever the corresponding
diagram G can be split into a vertex subdiagram S and
a cloud of soft gluons attached to the external quark
lines (diagram G/S), as in fig. 1a. In general some
gluons in G/S can be hard, provided they are within
UV divergent subdiagrams, such as, for example, the
vertex subdiagram {1, 2, 3} in fig. 1a. Such subdia-
grams can even contain quark loops. In all cases, the
IR divergent part of M; factors into Mg times the IR
divergent part of L g, where Lg is the charge form
factor computed from the diagram G/S.

One can attempt to.define the IR finite part of
My as Mg — MSLG/S’ or, for the whole perturbation
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Fig. 1. a) A magnetic moment Feynman diagram G which can
be split into an internal magnetic moment diagram 8§, and a
cloud of soft gluons, attached to external (inass-shell) quarks.
The IR divergences factor as Mg(LG/shR. b) A case where
the subdiagram S can be split further into T and §/T. All
gluens in GfS are exterior with respect to the gluons in S/T.

G/S |

series, as M — ML . This removes all IR divergences of
the type illustrated in fig. 1a, but introduces new IR
divergences not present in M. The reason is that Mg
might also be IR divergent, so that the counterterm
contains an IR divergence of type MrLg L /g (see
fig. 1b for the notation). Such a divergence in which
an internal gluon cloud 8/T is uncorrelated with the
exterior gluons of G/S is absent from M, ; interior
gluons can contribute to IR only if the exterior gluons
are already soft. Hence the counterterm _MSLG/S has
to be replaced by —(Mg — M1 Lgr)Lgs, o, for the
whole series, —ML by —(M — ML)L, Clearly the new
counterterm +ML2 will itself have to be replaced by

(M —ML)L2, and so forth, yielding

(IR — finite part of M) =M — ML + ML? — ML3 + ...

=a.

This completes the demonstration of the IR finiteness
of the anomaly (1), expressed in terms of the unrenor-
malized coupling. This has been checked explicitly up
to two loop level by Korthals Altes and De Rafael [5]
and by the present author [6]. As coefficients ag") in
(1) are IR finite, all IR divergences are contained in
the coupling constant renormalization Z,

I believe that the above result is a special case of
Kinoshita’s [7] theorem, and that for more general
QCD scattering processes the cross-sections expressed
in terms of bare couplinf [and summed over appro-
priate degenerate states™] are also IR finite. This has
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Fig. 2. A set of lowest order contributions to the coupling con-
stant renormatization Z1/2, Factors 1/2 come from the expan-
sion of (3) in termns of proper self-energy and vertex graphs.
The gluon loop diagrams include the Fadeev-Popov ghosts

and the combinatoric factors. Z can also be computed froin
gluon or ghost renormalizations.

been checked to low orders by many authors [8—12]
If this is true, then it is not necessary to study various
QCD processes with complicated bremsstrahlung con-
tributions; all QCD IR divergences are contained in the
coupling constant rencrmalization Z.

It is therefore important to examine Z in more de-
tail. One loop contributions (from (3)) are given in fig.
2. Each of the integrals can be split into an UV diver-
gent part, independent of masses and external momen-
ta, and an UV convergent remainder. In the diagrams
with internal quark lines this occurs automatically by
the rules of tef. {4]. For purely gluonic integrals (fig.
2b) a mass-scale which separates UV and IR has to be
introduced externally. The UV parts of fig. 2 (and in
general, Z to any order) can be absorbed into integrals
contributing to ag’) in (1), where they provide a point-
wise cancellation [4] of all UV singularities. Let us
furthermore note that the UV part of Z is gauge inde-
pendent and ealculable to all orders in terms of the
renormalization group function f{c) [13—-16]

adx )
ZUV:exp(bf?ﬁ(xf(;feﬁ)' @

(For QCD B is known up to two loop level [17, 18].)
Having thus absorbed the UV parts of the renormal-
ization Z, I evaluate the UV convergent remainderon.. .
the mass-shell {19]. Diagrams of fig. 2b, ¢ develop IR
divergences. In QED they cancel, but in QCD they add
up to a gauge invariant IR pole ‘ ,

* Colour summations have to include afl quark-soft gluon
combinations such that the over-all colour of an external
quark and its gluon cloud is fixed.
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Alternatively one can evaluate the UV convergent re-
mainder off mass-shell, at external gluon momentum
—g2 = p2, This merely replaces 1/e by In y, giving the
result noted independently by other authors {50, 10,
20] in different QCD calculations.

Korthals Altes and De Rafael [5] have pointed out
that the coefficient of 1/e is the lowest order term in
the § function for the pure Yang-Mills field. Why does
the function that controls the UV behaviour also con-
trol the IR behaviour? This is easiest to sce when 2 is
evaluated on the mass-shell. There the contributions
of fig. 2b, ¢ vanish separately by Ward identity [19,
21]. This occurs through the cancellations between
the IR and UV divergences. UV divergences are given
by the § function through (4), hence the IR divergences
are given by the § function for the pure Yang-Mills
field as well. Now it is clear that the QCD infra-red
will not be given by any simple exponentiation;
knowledge of the entire § function is necessary. Even
the leading singularities do not exponentiate, as one
can easily check by keeping only the lowest order con-
tribution to §in (4).

If the mass-shell coupling is finite, we see that any
process comnputed in QCD is divergent order by order
in perturbation theory. This is not surprising: the re-
normalization group tells us that QCD is asymptotical-
ly free, but that the effective coupling diverges as we
approach the mass-shell. Conversely, if the mass-shell
coupling is finite, asymptotic freedom starts infinites-
imally close to the mass-shell. Such theory is not just
asymptotically free, but free everywhere.

However, just as one absorbs the UV divergences
into the bare coupling, one is free to absorb the IR
divergences into the mass-shell coupling, In that case
it is necessary to give a prescription for computing the
finite parts of the renormalization, that is, define the
mass scale which separates UV and IR regions forthe:
pure Yang-Mills field. Ideally, such scale will be intro-
duced by quark binding. At this time, it is standard to
assume a finite effective coupling at some —q2 = p2.
In this case all QCD processes (properly summed over
degenerate states) are IR finite [8,9, 10, 12] in the
sense that In g is finite, and dressed coloured particles
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can appear in the asymptotic states. Now the IR diver-
gences manifest themselves as In"(—q2) modifications
to the large distance (g = 0) colour potential. Whether
they, summed to all orders, change the potential suf-
ficiently to produce confinement, is still an open ques-
tion. The connection of QCD 1R singularities to the
renormalization group, fllustrated here, might lead to
the answer.
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