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ASYMPTOTIC ESTIMATES AND GAUGE INVARIANCE
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Known low-order contributions suggest that the entire QED perturbation series for
the electron magnetic moment is convergent. This behaviour, which differs markedly
from the recent asymptotic estimates in various model quantum field theories, might be
of practical importance for high accuracy experimental tests of QED and of theoreticat
importance for study of Yang-Mills theories.

1. Introduction
T Reliable estimates of high-order radiative corrections in gauge theories are of
great importance, both practical (for example, for the evaluation of the electron
magnetic moment) and theoretical (for example, for the study of the renormaliza-
tion group function f(g) in QCD confinement theories). I shall argue that on the
- basis of the known low-order QED results the asymptotic estimates in gauge theories
should be radically different from those obtained in scalar theories [1—5]. The cru-
cial difference is that while in scalar theories individual Feynman diagrams can be
bounded, in gauge theories only gauge-invariant sets of diagrams can have bounds,
and the size of a high-order contribution should be controlled by the slowly grow-
p—_— ing number of gauge-invariant sets, rather than by the combinatorially exploding
* number of Feynman diagrams.

While it is commonly assumed [6,7] that in QED gauge-mvarlant sets are bounded,
no specific mechanism for this bound has been proposed *. This reflects the long
standing frustration [8,9] associated with QED Feynman integrals; due to the gauge

L dependence of individual diagrams, infinite renormalizations and infrared divergences,
we have no idea what size or even what sign to expect for a given radiative correction.
Explicit calculations are marked by strong cancellations among diagrams related by

« - gauge transformations, but we know of no way of exploiting the underlying gauge
- symmetry to effect the cancellations prior to an explicit evaluation of all contribut-
ing integrals.

* Address after Sept. 1 1977; institute for Advanced Study, Princeton, NJ.
* The attempt made by Drell and Pagels [8] was not successful in predicting the magnitude of
the sixth-order magnetic moment.
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Even though such method is lacking, we can use the experience from low-order
QED calculations to conjecture that the size of the 2nth order contribution in a
gauge theory is bounded by the number of gauge-invariant subsets in 2nth order. A
detailed analysis of the electromagnetic moment will also suggest a stronger hypo-
thesis that in a “gauge set approximation” the magnetic moment is convergent and
summable to all orders:

« 1 i
2 (0= () )

This is not meant to be an accurate numerical approximation, but only a guide to
the magnitude of the 2nth term, to be contrasted with the combinatorially growing
estimates of scalar field theory type [1—5]. The prediction for the eighth order in this
approximation is 0, with an accuracy guess of 0.3. These error brackets are not to
be taken too seriously, but merely compared with a combinatorial estimate [10] of
+25. The combinatorial estimate assumes that individual diagrams are uncorrelated,
with contributions statistically distributed around zero with standard deviation +1.

I shall first review the results of magnetic moment calculations and then contrast
bounds based on diagram counting with those based on gauge-set counting. A proof
of gauge invariance of gauge sets is outlined, as it might suggest a method for estab-
lishing bounds on gauge sets. The paper closes with a brief discussion of problems
raised by the conjecture. |

Hg-2)=a=~

2. Numerical results

All contributions to the electron magnetic moment anomaly @ up to sixth order

are known numerically [11—14] and most also analytically [15]. They are written
as '

2 3
a=a® 2+ (ff_) + a“’)(g) +.., )
™ 1r ™ ,
where
el =§ac . (3)

i computed from all #-loop proper vertex diagrams. The second-order contribution
was first computed by Schwinger [16]

=1, “)

Analytic expressions for higher orders consist of many fractions and transcedentals,
and display no obvious systematics. The numerical results for individual Feynman
diagrams are likewise confusing: they are dependent on the gauge and the method
of subtracting infrared divergences. As illustrated in fig. 2, in practice they fall with-
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Fig. 1. The fourth-order gauge sets. For diagrams related by titme reversal the value listed under
the first diagram of the pair is the total contribution of the pair.

in £10. Only the internally gauge-invariant sets [17] are separately infrared finite
and gauge independent. For them we observe

(i) Sets with photon self-energy subdiagrams are typically +0.02 to 10.1, i.e.3to
15% of the corresponding sets without photon self-energy insertions; creation of a
virtual e*e™ pair suppresses the low-energy end of the virtual photon integrations,
leading to comparatively small contributions.

(ii) Sets with electron loop subdiagrams with 4, 6, ... legs. In spite of the above
statement about e*e™ pairs the only such set computed so far, photon-photon "
scattering set, yields a comparatively large contribution to a(®): 0.37. If this is
caused by the nearly ultraviolet divergent nature of photon-photon scattering dia-
grams, we can speculate that subdiagrams with 6, 8, ... photon legs will again lead
to small contributions, and that only some [6,18] of 4-photon leg subdiagram sets
will be of a size comparable to sets with no electron loops.

(iii) Sets without electron loops, hereafter referred to as gauge sets, are listed in -
figs. 1 and 2. A gauge set (k, m, m') consists of all proper vertex diagrams without
electron loops with & photons crossing the external vertex (cross-photons) and m
[m'] photons originating and terminating on the incoming [outgoing] electron leg
(leg-photons), where m = m', and for asymmetric sets (m % m'), each diagram and
its mirror image belong to the same set. The gauge sets of figs. 1 and 2 are all rough-
ly 0.5, with the sign given by a simple empirical rule

Bxmm' = (1) L -
The sign rule is further corroborated by sets with photon self-energy insertions (but

with the absolute size scaled down to 3—15% of (5), as mentioned above). In fig. 3
I compare this rule with the actual numbers and make an eighth-order prediction.
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2n anomaly

2
/ l/z \ 5
‘ /% A : .. "0 (-.33)

h-s5 Varam

6 | Rese R Y > 1(83)
" (.40 :
2 e ! 1 1y,
8 2 72 la 2 S 0 (%)
-‘/2 1/2 -

Fig. 3. Comparison of the “‘gauge-set approximation” and the actual numerical values of corre-
sponding gauge sets, together with an eighth-order prediction.

3. Counting of gauge sets and Feynman diagrams

The extension of fig. 3 to arbitrary order is a matter of simple combinatorics * ;
in the “‘gauge-set approximation” the size of 2nth order term is growing linearly

2(m—1)
2n m=1 1\

with the first few terms listed in table 1. This series is summable, with the sum given

* An invaluable aid in identifying such combinatorial series is Sloane [19].
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Table 1
Comparison of the number of vertex diagrams, gauge sets and the “gauge-set approximation”
for the magnetic moment in 2nth order.

Order Vertex graphs Gauge sets Anomaly
2n Pap Gan a(2n)

2 1 1 1/2
4 S8 2 0

6 50 4 1

8 518 6 0
10 6354 9 32 \\
2 89 782 12 0
14 1429 480 16 2

by (1). The estimate can be improved by inclusion of sets with electron lbops, but
the numerical results quoted above suggest that they are non-leading or at worst
comparable to the gauge-set contributions, so I shall ignore all diagrams with electron
loops in the present paper. (My discussion applies only to electron QED; the muon
magnetic moment is characterized by the additional parameter In (my/m.), and sets
with electron loops are actually leading [18]).

Even if the empirical rule (5) should turn out to be too naive, any reasonable
bound on the size of gauge sets will lead to a convergent bound on the magnetic
moment. This is clear from the growth of G,,,, the number of gauge sets in 2nth
order, which is easily calculated by continuing fig. 3 to higher orders. (The first few
terms are given in table 1). Gy, to all orders can be written in terms of a generating

Vfu_nction _ N cdd , Gy, = ( % >2.

n X
n§l ConX (1+0(1-x° " ", G,= !\7:0‘?."") @
For example, if a bound on each gauge set is +1, with the substitution x=afn,(7)
becomes a convergent bound on a. ' '

Let me now contrast the above estimates with bounds based on the counting of
individual Feynman diagrams. Bender and Wu [20] have established bounds on the
size of the 2nth order contribution to the anaharmonic oscillator energy levels by
establishing bounds on individual Feynman diagrams and then estimating their num-
ber in the 2nth order. Even though in QED individual Feynman diagrams are clearly
not bounded (because of infrared divergences) and not independent (because gauge
transformations mix them), the early studies [21,22] of convergence properties of
QED were also based on diagram counting. I shall illustrate this type of a bound by
counting all diagrams (without electron loops) contributing to the proper vertex I'*
[ start by counting electron seif-energy graphs; there are

(2n)!
=

=135.2n—-1)=(2n- D! (8)
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Fig. 4. (a) Counting of the number of diagrams (without electron loops) contributing to the com-
plete electron propagator. (b) Definition of o, the generating function for the number of one-
particle-irreducible self-cnergy diagrams.

diagrams contributing to the complete electron propagator in 2nth order {see fig. 4a).
0,5, the number of one-particle-irreducible self-energy diagrams, can be computed
from the recursion relation

n R
Sqp = :/-:Jl 024 S2n~ks )

which follows from the perturbative expansion of fig. 4b. All proper vertex diagrams
are obtained by insertions of the external photon into internal electron lines, hence
_their number is

I2p = (20— 1)oa, | (10)

with the first few orders listed in table 1.

Even though the number of independent diagrams is somewhat smaller (I have
not taken into account the symmetry under time reversal), the combinatorial explo-
sion in the number of diagrams is amply evident. Such combinatorial growth in a
number of diagrams is characteristic of all quantum field theories, and any bound on
the size of individual diagrams (such as the assumption that their values are statis-
tically distributed around some average value) leads to a perturbation series diver-
gent for any o # 0.

4. Finiteness and invariance of gauge sets

In perturbation theory the magnetic moment anomaly and the renormalized
proper vertex are computed from

M
= 11
1+L° ' (an




P. Critanovic | Asymptotic estimates 183

P, = 2D (12

where M = F5(0), | + L = £,(0) are evaluated from the unrenormalized proper ver-
tex

Tp,q)=F(q*)7r" + Fa(q?) (ic™qu/2m) ,

and here I'” is restricted to the sum of all one-particle irreducible vertex diagrams
without electron loops. For this subset of diagrams Z3 = 1, and by the Ward identity
(Zy=Z)a=ag,s0 (11)and (12) are UV finite without charge renormalization.
The factor (1 + L)™' = Z, arises from the charge renormalization for the external
vertex (or, equivalently, from the renormalization of external electron lines). (The
diagrammatic expansion for I'V already includes the electron mass counterterms.)
To expand the above quantities in terms of gauge sets, assume temporarily that
cross-photons, in-leg-photons and out-leg-photons couple with different strengths.

' " m'

- 3 EETES e

mam' >0

Expanding M and L the same way. we find from (11)
Tmm' = Mgmm’ + EMk;mlm.i(_Lkzmzm'z)
+ Z)Mklmlm'z(—Lkszmlz) (—Lk3m3m'3) + bt ] (14)

where the sums go over all gauge sets for whichk =k, + &, +... + k,, and so on.
Gauge sets have the following properties:

(i) aromm: (and generally F}fm m') s wltraviolet {UV) finite

This foliows from the standard UV analysis of each diagram G contributing to
the set. UV singularities of G are of two types:

{a) The divergent subdiagram S is an external photon vertex diagram. The UV
divergence is cancelled by the LgI'§,s counterterm present in the expansion (14).
{The notation is explained in refs, [23 24].)

(b) The divergent vertex (self-energy) subdiagram lies entirely on thc in- or out-
electron leg. The gauge set I'%,,,,,* always includes the corresponding diagram with
the divergent self-energy (vertex) subdiagram that cancels the first divergence by
the Ward identity.

(i) @germ’ (but generally not T} is infrared (IR ) finite

Mg is IR divergent whenever it can be separated into an external photon vertex
subdiagram and a cloud of soft photons attached to the external lines. This IR di-
vergence is cancelled by the counterterm MgLg,s present [24] in expansion (14).
(Incidentally, this similarity of UV and IR counterterms is an illustration of the
connection between the two types of divergences emphasized elsewhere [25].)
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I'ig. 5. (a) Diagrammatic notation for QED Feynman rules. (b) Feynmaun identity.

(i) @gmm' (and generally T ') is internally gauge invariant [17], i.e. invariant
under the photon propagator transformation g*” - g + kM kPf(k?), where f&»
can be different for cross-photons, in-leg-photons and out-leg-photons [26]. Con-
venient diagrammatic notation is introduced in fig. 5, and interested readers can
derive the linear gauge dependence of the T, sets of fig. 2 by inserting kHKY in
all ways in the contributing diagrams and using the Feynman identity fig. 5b. The
cancellations occur between diagrams related by symmetric insertion of the gauge
photon around a photon vertex as illustrated in fig. 6, and the non-cancelled terms
arise from two sources of asymmetry under photon interchange.

(a) One-particle-irreducibility. Within a general gauge set there appears a sequence
of diagrams of fig. 7. Two terms survive because the diagrams that should cancel
them belong to the excluded set of self-energy corrections on the external line. How-
ever, the first term yields upon evaluation an explicit factor 6m and is cancelled by
the other (mass counterterm) term.

(b) Separation into gauge sets. If photon i in fig. 6 is external, the cancelling dia-
grams are in different gauge sets. Uncancelled terms arise from diagrams of the form
of fig. 8a, with two possibilities.

(i) The gauge photon is a leg-photon, leading to a surviving term of the form fig.
8b. This has precisely the same gauge dependence as the mass counterterm fig. 8c,
and gets cancelled (besides, any reasonable regularization sets this equal to zero).

(ii) The gauge photon is a cross-photon, leading to a surviving term of the form
fig. 8d. This is cancelled by the gauge dependence of the /. oo counterterm in the
expansion (14).

The same cancellations operate between various counterterms in (14), leading to

Fig. 6. Symmetric insertion of a gauge photon around & photon J vertex leads to the cancellation
of terms for which the propagator of the internal electron line 1 had been removed.
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Fig. 7. The cancellation of gauge dependence of one-particle-irreducible vertex diagrams (terms
in the brackets correspond to the exciuded terms contributing to the full electron-electron-pho-
ton Green function). Note that the unrenormalized gauge set is gauge dependent; this is compen-
sated by the gauge dependence of mass counterterms.

the gauge invariance of mass-shell renormalized gauge sets T aNd Gy

(iv) A gauge set has no further gauge invariant subsets. This is clear from the
above proof of gauge invariance, which relied on the factorization of gauge depen- .
dence. The factorization does not go through if one attempts to further sub-divide

22)

(a) b}

{c)

022

{d} {e)

Fig. 8. (a) The general form of gauge dependence introduced by the separation of gauge sets. (b)
If the gauge photon is a leg-photon, the gauge dependence is cancelled by the gauge dependence
of the mass counterterm (c). (d) If the gauge photon is a cross-photon, the gauge dependence is

cancelled by the gauge dependence of the vertex counterterm (e).
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the photon types. Another way of seeing this is by taking any diagram and gener-
ating the entire gauge set from it by requiring that its gauge dependence be cancelled
by the gauge dependence of diagrams related to it by the rule of fig. 6.

5. Discussion -

The “gauge-set hypothesis™ and the rule (5) are merely attempts to extract some
suggestive information from the tremendous effort that has gone into computing
low-order radiative corrections in QED. Some of thie weaknesses of above conjec-
tures are:

(i) The most glaring pitfall is the lack of a computational method for implement-
ing them. Of presently available techniques, the approach of refs. [26,27] seems
most suggestive; one can envisage decompositions of cross- and leg-photon propaga-
tors in which the leading terms would add up to rule (5), and the remainder be .-
shown to be non-leading. Alternatively, rule (5) could be a consequence of some
semiclassical solution similar to those employed in scalar theories [1-5].

(ii) As far as the gauge invariance is concerned, gauge sets (k, m, m') and (k, m’,

m), m ¥ m' could be counted as distinct.

(iii) In the light of the rather large photon-photon scattering contributions, it is
not certain that diagrams with electron loops will continue giving non- leadmg con-
tnbutlons

(iv) Why is &/m and not a/4n or something else the expansion parameter? Scalar
theory estimates suggest a dependence on 2n of a much more complicated form AU
than (1).

(v) While no way of combining internally gauge invariant sets is known, an exter-
nally gauge-invariant set [17] can be combined into a single integral [12]. Mass-
operator formalism yields the same result [13]. Inspection of fig. 2 shows that ex-
ternally gauge-invariant sets mix up gauge sets, and the origin of rule (5) would
seem very obscure in such an approach.

The convergence of the perturbation series (1) might also seem surprising in the
light of Dyson’s [28] argument about the non-analyticity of QED perturbation ex-
pansions. However, it is very hard to see what bearing his argument (about the
breakdown of the physical vacuum) has on a, which is defined as a formal Feynman
diagram series indifferent to the “true vacuum” of the theory. Convergence of @ is
also not necessarily in contradiction with the combinatorial growth of off-mass-shell
Green functions suggested by the work of Itzykson, Parisi and Zuber {4] on scalar
QED. The essential ingredients of a convergence are gauge invariance and mass-shell
renormalization, and off-mass-shell Green functions are both gauge and renormaliza-
tion method dependent.

In the absence of a method for estimating the size of gauge set contributions it is
impossible to say whether the success of rule (5) is fortuitous, but the importance of
establishing a such or similar rule cannot be overemphasized. The increase in the ex-

—d —

-
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T perimental accuracy of the electron magnetic moment measurements [29] will soon
confront us with the necessity of computing a(®) if we wish to determine the fine
structure constant « from QED. It is doubtful whether this can be carried out with-
‘. in the Feynman diagram approach: the sixth-order calculation already strains the
limits of the computationally possible. Numerical calculations [11—14] require large
amounts of computing time, and the analytic techniques [15], though very impres-
sive, are not yet sufficiently developed to cover even all sixth-order contributions.
The eighth-order calculation would entail 891 diagrams [6] (and some 100 6th order
counterterms), most of which are as lengthy to compute as the entire sixth order!

If it is the gauge invariance that controls the asymptotic estimates in QED, one
would expect that it plays a similar role in QCD. There, an asymptotic estimate of
the infrared renormalization group function 8 might resolve the important theoreti-
cal problem of whether the low-energy effective coupling has any IR fixed points,
or if indeed it diverges as hypothesized by the advocates of “infrared slavery”.

I would like to thank R.P. Feynmanwf:or a stimulating discussion.

Note added in proof

Recently Lautrup [30] has shown that in the 2nth order the contribution of the
diagram with n — 1 electron loops grows as (n — 1)!. This is a general feature of
renormalizable theories [31]. My “gauge-set hypothesis™ still applies to diagrams
without electron loops, but the full QED perturbation series for the magnetic mo-
ment will be divergent unless there occur further cancellations among gauge invariant
contributions to the photon propagator. :
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