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The invariant length and volume which characterize the Lorentz group are extended to a
quadratic and a quartic supersymmetric invariant. The symmetry group of the Grassmann sector can
be SO(2), SU(2), SU(2) x SU(2) x SU(2), Sp(6), SU{6}, SO(12) or E;, which are also possible global
symmetries of extended supergravities. Diophantine conditions which yield this classification follow
from the corresponding conditions in d bosonic dimensions by the replacement d - —d.

1. Introduction

Parisi and Sourlas [1]Thave suggested that a Grassman vector space of dimension 4
can be interpreted as an ordinary vector space of dimension —4. It is perhaps not
widely appreciated that semisimple Lie groups abound with examples in which a
d = —d substitution can be interpreted in this way [2]. An early example were
Penrose’s [3] binors, which are representations of SU(2)=Sp(2) constructed as
SO(--2). This is a special case of a general relation between SO(d) and Sp(—d); if
symmetrizations and antisymmetrizations are interchanged, representations of
SO(d)} become Sp(—d) representations. Here [ shall illustrate such relations by
working out in detail an example which is suggestive in the light of Cremmer and
Julia’s [4] surprising discovery of a global E; symmetry in supergravity.

Ishall extend the Minkowski space into Grassmann dimensions by requiring that
the invariants of SO{4) {or 8O(3, 1); compactness plays no role in this apalysis)
become supersymmetric invariants. SO(4) is the invariance group of g,. and &,.c0p,
hence I am looking for the invariance group of the supersymmetric invariants

-

(x,y) =guvxu)’vs

= wo o o
(x! Y,z W)_euvo'px yz w,

where* i, »,...=4,3,2,1, -1, -2, ..., —d: For the quadratic invariant the group
is the orthosymplectic [5] OSp(4, d). This group is orthogonal in the bosonic
dimensions and symplecticin the Grassmann dimensions, because if g, is symmeitric

* My secret motive for thinking of the Grassmann dimension as — 4 is that I think of the dimension asa

trace, d = 8%, and in a Grassmann (or fermionic) world eaeh trace carries a minus sign.
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374 P. Cvitanovié /| Negative dimensions

inthe », u >0 indices, it must be antisymmetric in the v, 4 < 0 indices. In this way the
supersymmetry ties in with the SO(d) ~ Sp(—d) equivalence mentioned above.

Following the line of reasoning just employed to extend the symmetric Minkowski
invariant g,, into Grassmann dimensions, I assume that if the quartic invariant
tensor e,..., is antisymmetric in ordinary dimensions, it is symmetric in the Grass-
mann dimensions. My task is to determine all groups which admit an zinfisymmetric
quadratic invariant together with a symmetric quartic invariant. The method will be
to introduce the invariants one by one, and study the way in which they split up
reducible representations. The first invariant might be realizable in many spaces.
When the next invariant is added, the group of invariance transformations of the first
invariant splits into two subgroups; those transformations which preserve both
invariants, and those which do not. Such decompositions yield Diophantine condi-
tions on representation dimensions. These conditions are so constraining that they
limit the possibilities to a few that can be easily identified.

In the present example the resulting classification can be summarized by*

Invariants Lie algebra (representation dimension)
symmetric g,

antisym. €,,,.,: A+ A(4), Go(7), B1(8), Ds(10);
antisym. g, SOQ2), A1(4), A;+ A1+ A (8),
symmetric e,,,.,; Cs(14), As(20), Ds(32), E+(56). .

From the supergravity point of view it is important to note that the Grassmann space
relatives of our SO(4) world include E;, SO(12) and SU(6) in the same represen-
tations as those discovered by Cremmer and Julia. Furthermore, it appears that all
seven possible groups can be realized as global symmetries of the seven extended
supergravities if one vector multiplet is added to N =1, 2, 3 and 4 extended
supergravities.

The above method has been used in ref. [2]to extend a fascinating group-theoretic
construct known as the Freudenthal magic square [6] to a “magic triangle”. Here I
reproduce a row of this extension using the matrix notation of Okubo [7], rather than
the diagrammatic notation [8] used in ref. [2]. Originally the d » —d relations and the
magic triangle arose as byproducts of an investigation of group-theoretic structure of
gauge theories undertaken in ref. [8]. At the tinfe they appeared to be mere
mathematical curiosities, but since then their possible connection with Grassmann
dimensions and supergravities has made them more intriguing. As they emerge from
what appears to be a new construction of exceptional Lie groups, the complete
presentation [2] is very lengthy. The present paper is not an explanation of the
general construction; its purpose is to make specialists aware of the possible
connections between supergravity and supersymmetry on one hand and the magic
triangle and the negative dimensions on the other. Unfortunately, as the complete

* Semisimple algebras are identified here by their Cartan designations. The corresponding classical
groups are given in sect. 6 and the abstract.
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P. Cvitanovié¢ [ Negative dimensions 375

presentation [2] is not yet available, this article has to include quite a bit of algebra
essential to the understanding of the construction.

Sect. 2 sets up the general procedure. In sects. 3 to 6 I determine the groups which
allow a symmetric quadratic together with an antisymmetric quartic invariant. The
end result of the analysis is two non-trivial Diophantine conditions together with the
explicit projection operators for reduced representations.”In sects. 7 to 10 the
analysis is repeated for an antisymmetric quadratic together with a symmetric quartic
invariant. I find the same Diophantine conditions with dimension d replaced by —d,
and the same projection operators with symmetrizations and antisymmetrizations

" interchanged. Possible relations to the extended supergravities are discussed in sect.
11. The summary is given in sect. 12. The calculation of Dynkin indices is described
in appendix A. The relation between SO(d) and Sp(—d) is discussed in appendix B.

2. Reduction procedure

Let x eV be a d-dimensional vector x*, u =1, 2,...,d, and G, be a [d xd]
matrix representation of a linear transformation g: x* = G*x”. A d-dimensional
vector x,, an element of the dual* vector space %€V, transforms under g as
X', = xu(G_l),':. By definition, x,,y* is an invariant of g, and 8% is an invariant tensor.
Consider next a tensor x;1%2, € Vi®V,®V;® - ®V,,. It transforms linearly
under g and it can be considered a vector x* in a d;d, ... d,. dimensional vector
space. We can chose to index this vector with a single index u (u=1,

sdida -+ +dn,] or with the array of indices %2, . The [did,- - dm ¥

didy - -+ d,] dimensional matrices can be indexed in the same way, with the
multiplication defined by

vo__ vV oy o0 Byl
(AB)u_Av; 2Vm’l7:1;(72 mB 1 20,,1’;1.::;1.2 " (2'1)

The distinct roots of the minimal characteristic polynomial of a [d X d] matrix A,

M
[ (A-a)=0, 2.2)
i=1
resolve the d-dimensional vector space V into M orthogonormal subspaces Vi,
Va, ..., Vi by means of projection operators [7]
(A—q;l
p=q A7 (2.3)
=i o — 0‘1)
The dimension of the subspace V; is
d,=tr P,. (2.4)

In particular, if A is invariant under transformations g, the resolution into

* For more rigorous definitions, see ref. [9].
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orthonormal subspaces is also invariant. Each new invariant introduces new pro-
jection operators which might or might not resolve an invariant space V; into further
subspaces. I shall not have to worry about the further reducibility of such subspaces,
as the Diophantine conditions I shall derive do not require irreducibility.

A particularly interesting vector space is V® V which contains the generators of
infinitesimal transformations D! =G4 —&%. They form a subspace V,e VRV
called the adjoint representation. According to (2.3), an invariant matrix A}, 7
resolves V®V into invariant subspaces* V.. To determine which of these subspaces
belong to the adjoint representation, consider the invariant

/
A(Z, y, @, v)= ALy u,’
The invariance group of A consists of all g such that
A(ZG™!, Gy, aG ™", Gv)=A(%, y, i, v) .

Taking infinitesimal G =1+ D leads to an invairance condition on the infinitesimal
generators

~-D; A,L,5+D A“,s Dy AM,,S +D}§ vy =0.

If V;© V4, then (P,-)ZY;Di € Va forany D. Hence V; belongs to the adjoint represen-
tation only if it satisfies the invariance condition:

(P)g'ZAuaé_*_(Pi)gﬁ’ 1.1.18 (}))mY :.ag +(P) u’B _0- (25)

Clearly there is a corresponding covariance condition for any invariant tensor:
A‘-"l“'z )

viva

Asan example of the above reduction procedure consider how the invariant tensor
8% reduces V®V into representations of SL(d). There are exactly two independent
invariant [d” X d*] matrices:

identity: 1%,2=58%52,
trace: T4 0=8480. (2.6)
The trace operator has a trivial characteristic equation
T?=dT,
with roots «; = d, a, = 0. The corresponding projection operators (2.3) are

1 1
=—=T P,=1--T 2.7
Pl d ’ 2 d ( )

with dimensions d; =tr P, =1, d,=tr P, = d”>—1. In this way the invariant matrix T

* For example, x% can be separated into trace x| and the traceless part, as in (2.8).
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has resolved the space of [d X d ] matrices into

1
singlet: (P1)5‘f=55‘55ﬁ,

(2.8)
adjointrep: (P,)" =848° —%5:‘5;2 .
V. is the space of traceless matrices, i.e. the invariance group of 8" is SL(d). [The
invariance conditions (2.5) are in this case satisfied trivially by both representations. |
Before leaving SL(d) one should also quote the classical result of the theory of
invariants [9]; beyond &;, SL(d) transformations also preserve the Levi-Civita
tensor in d dimensions,

/

€ prri gy E71H2 (2.9)

It is easily verified [2] that P, satisfies the appropriate invariance condition of type
(2.5). As I shall study subgroups of SL(d), they all will also have Levi-Civita tensors
as invariants.

3. The symmetric quadratic invariant
Extend the set of invariant tensors to three:
65’ guVZgV“’ gV}L:gﬁLV' (3‘1)

The matrix A} = g*’g,., must be proportional to unity, otherwise its characteristic
equation would decompose the d-dimensional representation. One can choose a
normalization such that

8“8 =57 3.2)
The only new [d” x d*] invariant matrix is the flip matrix F:
Fil =8"8u,. (3.3)
The characteristic equation
F?’-1=0 (3.4)
yields two projection operators (2.3)
P;=3(1+F), Ps=3(1-F). (3.5)

To find out how the subspaces Vi, V; given by (2.7) decompose we need the
multiplication rule

TF=T. (3.6)
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This gives
P3P, =P, P3P, =P;—P=Ps,
3.7
P4P1:P, P4P2=P4.

In this way the invariant matrices T and F have decomposed the d’? dimensional
vector space VRV into three subspaces VROV =V, ®V.,D Vs given by projectors

1
singlet: (P2 = 35 L85,
/
symmetric: (P5)?=3(8482 +g"%g,,) — —5 L8y, (3.8)

antisymmetric: (P2 o = 2(5 “50 — g" gvp)

The dimensions of the subspaces are

1—(P1 “V_l
- dd-1
d4=TrP4=(—2—), 3.9
+1
d5=TrP5=i(£2——)—l .

Clearly this decomposition is just the standard SO(d) decomposition (trace,
antisymmetric, traceless symmetric)

d(d 1) (d(d+1)_1>.

d®d=1® )

Moreover, the projection operators (3.8) are explicit Clebsch-Gordon coefficients
for the decomposition. (P,)% are SO(d) rotation generators, as can be verified by
checking the invariance condition

(Pa)isg” +(Pa)isg®™ =0. (3.10)

The remaining generators of SL(d) from (2.8), P,—P,=Ps, do not leave g*°
invariant. It is also worth noting that nowhere have we made assumptions about the
eigenvalues of g, so this construction applies equally well to compact and non-
compact groups.

4. The antisymmetric quartic invariant
Add to the set of invariants (3.1) a fully antisymmetric tensor

ep.up8 = TCuups T TCupus = _euuap . (4'1)
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The simplest [d® X d°] matrix constructed from the new invariant is
EL =8"8" e 4.2)
The multiplication table (3.6) is now extended by
TE =0, FE=-E. - (4.3)
The E invariant is absent from the symmetric subspaces:
PLE=0, PsE=31+F)E=0. (4.4)

/This means that the E invariant can decompose only the V, subspace. As I wish to
introduce one invariant at a time, I demand that no further independent [d” X d?]
invariant matrices can be constructed from E. In particular, E” is not independent:

E*+bE+cP,=0. 4.5)

This condition incidentally also insures that the [d X d] matrix (E*)"Y is proportional

to unity:
J .
(E? :‘::—c;“az. (4.6)
Were this not true, distinct eigenvalues of E? matrix could decompose the d-
dimensional representation.

If the coefficients in (4.5) can be fixed, V, will separate into the new adjoint
representation subspace Vs and the remainder V; by means of projection operators:

E-a;1

adjoint: Pe=—"2""p,,
X — X7
E . 4.7)

antisymmetric: P;= — %o P,
a7 — Ug

a6+a7=—b, A7 =C.

The coefficient ¢ is fixed by the scale of E:
Tr E*+c¢ds=0. (4.8)

To fix the remaining coefficient b, introduce an index permutation on [d>x d*]
matrices:

SANE=A%, =1 @9)
The invariant matrices map as
oc)=T, oF)=F, o(E)=-E. (4.10)

It follows that
Pio(P))=3(1-F)}(T-F)=1P,. (4.11)
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The characteristic equation (4.5) maps under o( ) and P4 projection into

Py(0(E*)~bE +3¢)=0. (4.12)
In particular, in the adjoint representation subspace V¢ (note PsE = aePs)
3 Tr E?
Po(EY+ai->——)=0. (4.13)
2 d,

To compute Pso(E?), one contracts the invariance condition (2.5) for E with another
E matrix and uses the antisymmetry of E as well as (4.6). (Parenthetically, such
calculations are easy in the diagrammatic notation [2, 8].) The result is

1Tr E?

E%) ==~
P(,O'( ) 3 d

Ps. (4.14)

Now ag, a7 and Pg, P follow from (4.13) and (4.8):

_ [TrE®10-d __[TtE* 6 4.15)
N4, "6 © YT V4, 10-a '

6(10—4d) d, 6

it P N
adioint: Ps=V6—ay 2" "16-d "
6(10—d) d 10—d (4.16)
. - 4 -
: =— +
antisym: Br==NGe—ay w2 " T16-d "
with the dimensions
_ _3d(d-1)
d6—TrP6—--————16_d s
d(d -1)(10—-d) (417
—1y p, - 2d-1)1A0~a)
dr=Tr P ===~ d)

This completes decomposition VRV =V, ®Vs@®Ve® V;. The new subspaces Vi,
V7 have integer dimension only for d =4, 6, 7, 8, 10. However, the reduction of
V®V®V undertaken in the next section will eliminate the d = 6 possibility.

5. Further Diophantine conditions

The reduction of the V®V space induced by the invariants §*, g,., and e,,., has
led to a very powerful Diophantine condition (4.17). I shall now show that further
Diophantine conditions follow from the reduction of higher product spaces V° @ V.
As an example, I turn to the reduction of Ve®V < VR V2 The tensor Xup 18 an
element of the tensor space V¢®V if

(PG)‘:::xl:'lp =xl:p’ (51)
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and the [dds X dds] matrices are indexed as in (2.1). The two simplest invariant
matrices one can write down are

identity: v’ = (Pe)1ab,
o (5.2)
defining rep: v B = (Ps)up 8o (Pe) 5

The factor 87 in R is written out to indicate that R is a mapping Ve®@V -V -
Ve®V. Indeed, the characteristic equation

ds
R?>=22R 53
| 7 (5.3)
yields projection operators
d d
Py=—R, Py=1-—— R. 5.4
Ly 9 e (5.4)

Hence Ve®V = V@V, with dimensions

dS: (PB :}4‘”;;7:‘1’

(5.5

d9:trP9=d(d6"1) .
The next obvious invariant matrix we can construct is an index permutation of R:

v = (Pe)ys(Pe)og - (5.6)
In order to find the associated projector operators one has to compute

(Q%) 8 = (Pe) 2 (Ps) 2 (Pe) s .

This is achieved by substituting (Ps)sa by (4.7) and using the invariance condition
(2.5). The result is
Q= ——{(as+a7)Q —asPs—arl}. (5.7)
2(ae— ay)
The d-dimensional space Vy is irreducible. Vg is decomposed by the roots a o, a1; of
the characteristic equation:

1 ag+ 1
P9<Qz__a6 az O+s 27 )=0’
2 Og— @7 2 adg— X7
(5.8)
(2% 1
@10 = s x11=2.
deg — 7
The associated projection operators are [substituting (4.15)]
2(16 —d)
P10=—2W(—Q+%)P9 ,
(5.9)

_2(16—d)( 6 )
Pu=—g—a \Qt1g_g)F
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This completes the decomposition V® Ve = Vg@ V ;. To compute the dimensions of
Vi, V11 subspaces we need tr PoQ. Evaluation yields

2d2+d
tr PoQ = ——1—(6‘—_(1—) . (5.10)

Finally, I obtain

3d{(d +2)(d -4
dlozter:—“(’—z‘é__%,
/ (5.11)
_32d(d—-1)(d +2)

di=tr Py = .
= P = e T s —a)

The important aspect of these relations is that the denominators, and hence the
Diophantine conditions, are different from those in (4.17). It is easy to check that of
the solutions to (4.17) d =4, 7, 8, 10 are also solutions of the present Diophantine
conditions. All the solutions are summarized in table 1.

6. Lie algebra identification

As I have shown, symmetric g,, together with antisymmetric f,,,, invariants
cannot be realized in dimensions other than d = 4, 7, 8. But can they be realized at
all? To verify that, one can turn to the tables of Lie algebras [10] and identify these
three solutions.

TABLE 1

Representation dimensions for the SO(4) family of invariance groups

Representation Dimension A +A G, B; Ds
V = defining d 4 7 8 10
3d{d-1)
Vs =adjoint 3 14 21 45
s =adjoin 16-4d
. d{d-1)(10—4d)
V;=ant . _— 3 7 7 0
7 = antisym 216-d)
d+2)(d-1
Vs =symmetric % 9 27 35 54
3d(d+2)(d—4
Vio —(———u 0 27 48 120
28~d

32d(d—1){d +2)
v kA v M 8 64 112 320
1 (16—d)(28 —d)
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6.1. SO(4) OR A;+A; ALGEBRA

The first solution, d =4 is not a surprise; it was SO(4), Minkowski or euclidean
version, that motivated the whole project. The quartic invariant is the Levi-Civita
tensor €,.,,. Even so, the projectors constructed are interesting. Taking

EY =8" 8% teonp, (6.1)
one can immediately calculate (4.5):

E*=4P,. (6.2)
"The pojectors (4.16) become

Pe=3P,+iE, P,;=3P.—iE, (6.3)

and the dimensions are de=d;=3. Also both Ps and P satisfy the invariance
condition, so the adjoint representation splits into two invariant subspaces. In this
way one shows explicitly that the Lie algebra of SO(4) is semisimple A;+ A;.
Furthermore, the projection operators are precisely the n, 77 symbols used by ’t
Hooft [11] to map self-dual and self-antidual SO(4) antisymmetric tensors onto
SU(2) gauge group:

(Po)iy =4(8560— 8" 8, +£"°,,)

1 u 8
= T4 avMNap »

(6.4)
(P)y = 48580 — 8" —€"°,)
=~ ds Tap -

The only difference is that instead of using an index pair %, 't Hooft indexes the
adjoint spaces by a =1, 2, 3. All identities listed in the appendix of ref. [11] now
follow from the relations of sect. 4.

6.2. DEFINING REPRESENTATION OF G,

The 7-dimensional representation of G is a subgroup of SO(7), so it has invariants
8uv And £ ,,5000p. In addition, it has an antisymmetric cubicinvariant {12, 8] f,.,,. (This
invariant can be interpreted as the multiplication table for octonions.) The quartic
invariant we have inadvertently discovered is

— By
Cuvpo = 8;1-1'00'&B~/fa .

Furthermore, for G, we have a powerful algorithm [8, 13] by which any chain of
contractions of more than two f,z, can be reduced. Projector operators of sects. 4
and 5 yield Clebsch—-Gordan series

TR®T7T=1027014D7
T®14=T7D27064.
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TABLE 2

Dynkin indices for the SO(4) family of invariance groups

Representation Dynkin index A+A, G, Bs Ds
. 16-d 1 1 1 1
V =defi 3 i 5 g
efining Adid) 2 4 5 g
Vs = adjoint 1 1 1 1 1
(10-d)(d—-4) ! 1
V,=anti . e 0 i 5 0
7 =antisym Ad+D) by 5
/
16-d
Vs =symmetric ( 2 ) 3 3 2 3
v 7(16 -d){d —4) . 9 14 7
10 W4(28—d) 4 s 3
8(2d +7
Vi 8Qd+7) 5 8 16 12
(28—-d)

6.3. SO(7) 8-DIMENSIONAL REPRESENTATION

I have not attempted to identify the quartic invariant in this case. However, all the
representation dimensions (table 1) as well as their Dynkin indices (table 2) match B,
representations listed in the tables of Patera and Sankoff [10].

6.4. SO(10) 10-DIMENSIONAL REPRESENTATION

This is a trivial solution; Ps = P, and P; = 0, so that there is no decomposition. The
quartic invariant is

euvap = Euuo’paB'y&u{CaB,'yﬁ,m{ = 0 ’

where C,p ,5..; are the structure constants.

7. Antisymmetric quadratic invariant
Instead of (3.1), consider invariants
5,8 ==-8",  Buw="8u- (7.1)

As usual, AY =g""g,, must be proportional to unity, but this time I chose the
normalization

885 =—67. (7.2)
With this choice egs. (3.3)-(3.8) apply, but now
TrF=-d, (7.3)
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so d in the dimension formulas (3.9) gets replaced by —d:

_d@d+) . _dd-1)
- Aot

dy 5 , > 1. (7.4)

In this way we reach the standard Sp(d) decomposition

d®d=1D

d(d2+_1)®<d(d2—1)~1) '

In addition d must be even, because (7.2) cannot be satisfied in the odd dimensions.

8. Symmetric quartic invariant
We now add to the set of invariants (7.1) a symmetric tensor
e;uzpé = evy.pé = eupv& = eu.v&p . (8'1)

Again most of the algebra is the same as in sect. 4. Egs. (4.2) to (4.8) are the same. We
redefine the index permutation (4.9) as

oAy =-AL, o’=1. (8.2)
Continuing as in sect. 4 we have
o(l)=-T, o(F)=F, o(E)=-E. (8.3)
(4.12), (4.13) still apply, but the present redefinition of o flips sign in (4.14)

1 TrE?
PG(EZ)=—§ 4

Ps . (8.4)

This amounts to replacing d » —d in all remaining expressions

. 6(10+d)d, 6
d : = +
adjoint: Po= N qeraP e 28 TT6d  ®
6(10+d)d 10+d (8:5)
) +d)d, +
tric: P;=— +
symmetric: Py (6+dPTrE " TT6+a
3d(d+1) 360
= ———— — +
ds 16+d 3d—45 8+3d’
(8.6)
d7=d4—‘d6.

There are 17 solutions to this Diophantine condition, but only 10 will survive the
next one.
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9. Further Diophantine conditions

Rewriting sect. 5 for an antisymmetric g,,,, symmetric e,,,,, is absolutely trivial, as
these tensors never make an explicit appearance. The only subtlety is that for the
reductions of Kronecker products of odd numbers of defining representations (in this
case V®V?), additional overall factors of — 1 appear, such asin the éq. (B.1) of the
appendix B. For example, it is clear that the dimension of the quark subspace ds in
(5.5) does not become negative; d » —d substitution propagates only through as, a7
and d¢ expressions. The dimensional formulas (5.11) become

! 3d(d —2)(d+4)

T T

9.1)
4. 32dd-2)d+1)
U (d+16)(d+28)

Out of the 17 solutions to (8.2), 10 also satisfy this Diophantine condition; d = 2,4, 8,
14,20,32,44,56,164,224. d = 44,164 and 224 can be eliminated [2] by considering
reductions along the eolumns of the Freudenthal magic square and proving that the
resulting subgroups cannot be realized; consequently the groups that contain them
cannot be realized either. These considerations are beyond the scope of the present
paper. Only the 7 identified solutions listed in table 3 are expected to have
antisymmetric g, and symmetric e,,,s invariants in the defining representation.

10. Lie algebra identification

It turns out that one does not have to work very hard to identify the series of
solutions of the preceding section. SO(2) is trivial, and there is extensive literature on
the remaining solutions. Mathematicians study them because they form the third row
of the (extended) Freudenthal magic square [6]*, and physicists study them because
E;(56) > SU(3). xSU(6) is one of the favourite unified models [14]. The represen-
tation dimensions and the Dynkin indices listed in tables 3 and 4 agree with the above
literature, as well as the Lie algebra tables [10]. Here I shall explain only why E- is
one of the solutions.

The construction of E7 closest to the spirit of the present paper has been carried
out by Brown [15, 16]. He considers a d-dimensional complex vector space V with
properties

(i) V possesses a non-degenerate skew-symmetric bilinear form {x, y} = g,.x“y".

(ii) V possesses a symmetric four-linear form q{x, y, z, W) = €,,0,x“y "z W’

(iiiy If the ternary product T(x,y, z) is defined on V by {T(x,y,z), w}=

q(x, y, z, w), then 3{T(x, x, y), T(y, y, )} ={x, y}a(x, y, y, y).

* Further references can be found in [8].
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The third property is nothing but our invariance condition (2.5) for e,,,s, as can be
verified by substituting P from (8.5). Hence our quadratic, quartic invariants fulfil all
three properties assumed by Brown. He then proceeds to prove that the 56-
dimensional representation of E; has the above properties, and saves us from that
labour.

11. The extended supergravities and the magic triangle

The purpose of all this algebra has been to show that the extension of Minkowski
space into a superspace can be a non-trivial enterprise. We now have an exhaustive
classification, but are there any realizations of it? Surprisingly enough, every single
entry in the classification appears to be realized as a global symmetry of an extended
supergravity.

Cremmer and Julia [4] have discovered that in N = 8 (or N =7) supergravity’s 28
vectors together with their 28 duals form a 56 multiplet of a global E; symmetry. This
is a global symmetry analogous to SO(2) duality rotations of the doublet (F,,, F%,)in
7* = 0 sourceless electrodynamics. The appearance of E; was quite unexpected; it is
the first time we see an exceptional Lie group emerge as a symmetry without having
been inserted into a model by hand. While the classification I have obtained here
does not explain why this happens, it suggests that there is a deep connection
between extended supergravities and the exceptional Lie algebras. To establish this
connection, observe that Cremmer and Julia’s N =7, 6, 5 global symmetry groups
E;, SO(12), SU(6) are included in the present classification. Furthermore, vectors
plus their duals form multiplets of dimension 56, 32, 20, so they belong to the
defining representations in my classification. For N <4 extended supergravities the
numbers of vectors do not match the dimensions of the defining representations.
However, if one adds one vector multiplet*, the numbers match up, and N =1,
2,..., 7 extended supergravities exhaust the present classification. This is sum-
marized in table 5. As I have not explicitly constructed N =1, 2, 3, 4 supergravities
with the extra vector multiplet, at present this list of global symmetries is only a
conjecture. However, there are examples of such supergravities in the literature {17].
Scherk has argued that they are physically preferable [18] to supergravities without
extra multiplets. They might also be natural from the dimensional reduction point of
view; for example, extended supergravity in five spacetime dimensions [19] reduces
to N =2 extended supergravity with an extra vector multiplet.

As mentioned in the preceding section, the present classification is a row of the
magic triangle [2]. This is an extension-of Freudenthal’s magic square, an octonionic
construction of exceptional Lie algebras of great interest to mathematicians [6]. The
remaining rows are obtained [2] by applying the methods of the present paper to
various kinds of quadratic and cubic invariants, while the columns are subgroup

* 1 am indebted to Poul Howe for this observation.
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chains. In this context the Diophantine condition (8.6) is one of a family of
Diophantine conditions of form

dn=3k=6)1-6)~72+360(1+7) . 1Ly

[(8.6) is recovered by taking k =24, d =2[—16.] Further Diophantine conditions,
analogous to (9.1), reduce the solutions to k, /=8, 9, 10, 12, 15, 18, 24, 36. The
corresponding Lie algebras form the magic triangle, table 6.

, As we have seen above, extended supergravities in D = 4 dimensions are related to
the E; row of the magic triangle. Could it be that supergravities in other dimensions
are related to the remainder of the magic triangle? There is some evidence to support
such claim. Dimensional reduction of D =11 supergravity yields a sequence of

TABLE 6

The magic triangle for Lie algebras

?0 3
Ay
‘0 2
) 1 8
u( A,
0 1 3
R : . -
A, G,
0 1 3 7
0 0 2 9 28
2U(1) 3A, D,
0 1 2 4 8
0 0 3 Iy 21 52
A, A, C, F,
0 2 5 8 14 26
0 0 2 -8 16 35 78
20) | A, 24, As E,
0 1 3 6 9 15 27
V] 1 3 9 21 35 66 133
u(1) A, A, |G As D, E,
0 2 4 8 ?14 20 32 56
3 8 14 28 _52 78 133 248
A, A, G, D, [ F Eq E, Eq
3 8 14 28 sz oA e s

The Freudenthal magic square is marked by the dotted line. Within each entry the number in the upper
left corner is d o, the dimension of the algebra, and the number in the lower left corner is d, the dimension
of the defining representation. Defining representation dimensions for the top four rows are guesses, while
for the bottom four rows they have been derived in ref. [2]. The Diophantine conditions also allow for
trivial slutions indicated by d = d = 0 along the hypotenuse.
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extended supergravities in D =10, 9, ..., 5, 4, 3 with E;,-p global symmetry [20].
For D =35, 4, 3 this coincides with the magic triangle Es, E;, Eg algebras. This
suggests that different rows of the magic triangle should correspond to different
spacetime dimensions, while the columns should correspond to the number of
physical degrees of freedom (for example, both D =11 supergravity and D =4,
N =7 extended supergravity have 128 Fermi and 128 Bose physical degrees of
freedom [21]). It is straightforward to construct the analogue of table 5 for D =5
which corresponds to E¢ row of the magic triangle and which reduces [21] correctly to
D =4 row. Proceeding this way one can fill up the magic triangle with conjectured
particle content of all supergravities; however, in the absence of explicit equations of
motion this scheme is too ambiguous to be of much value.

12. Conclusion

This article consists of two parts. The first part is a non-trivial example of how
Grassmann dimensions can be interpreted as negative bosonic dimensions. To
recapitulate; replacement of bosonic dimensions by Grassmann dimensions inter-
changes symmetrizations and antisymmetrizations. The Diophantine conditions and
the projection operators in d bosonic dimensions are the same as the corresponding
conditions and projection operators in —d Grassmann dimensions. In particular,
while the bosonic solutions include SO(4), fermionic solutions are E,(56), Dg(32),
etc.

This motivates the second part of the paper, the conjectured connection to
extended supergravities. Two conjectures are made: (i) Extended supergravities in
four spacetime dimensions exhaust the classification. This implies that an extra
vector multiplet must be added to N =1, 2, 3, 4 extended supergravities. (i) All
possible extended supergravities in 3<D <11 spacetime dimensions exhaust all
(global) symmetry groups listed in the magic triangle.

Finally, it should be noted that the Grassmann dimensions of the supersymmetric
invariants (x, y), (x,y,x, w) are not the customary superspace dimensions #°.
Indeed, as the classification arose from the consideration of Grassmann—Grassmann
sector alone, supersymmetry was inessential to the argument, and it is possible that
D =4 extended supergravities just happen to have a symplectic quadratic and
symmetric quartic invariant on the mass-shell without any deep connection to the
underlying superspace. In that sense conjecture 2 stands on much weaker ground
than the conjecture 1. However, if conjecture 2 were true, it would be very intriguing
because it suggests an octonionic formulation of supergravities. Similar possibility
has been considered by Giinaydin [22].

I am grateful to P. Howe and L. Brink for teaching me how to count, E. Cremmer
for hospitality at Ecole Normale Superieure and W. Siegel for many helpful
criticisms.
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Appendix A

DYNKIN INDICES

In the Lie algebra tables [10] a representation is identified by a pair of integers; the
dimension and the Dynkin index. Computation of Dynkin indices requires some
more group-theoretic formalism.

A linear transformation g acts on the tensor space VO V®V® - - - by acting on all
components as

/ gVRVRV®: ) =GVRGVRVG'®- . (A.1)
For the infinitesimal transformation, G =1+ eETf, this implies

TE(VRVRVE®: )=(TEV)®V®: -+ VR(TEVIQV®- - -

_ (A2)
“VOVRVTEH® -

Hence the [d™ x d™] matrix representation of Tg, the generators of the Lie algebra,
can be built from the [d X d] representation by

aya,a By B, _ a\a @ - @ o B B,
(T3)ar 2o fiel = (T8)™,6,853802 - - - 80m + 851 (T5)™,6,08 - - 80 (A3)
+851852(Tp)ass 80n ++ -,

(Tg)y, 5= "‘(Tg)s,y = (PA)ffg. (A-4)

In this matrix notation a tensor x3172, (or equivalently, a vector x) is invariant if it
is annihilated by the generators

T%x=0. (A.5)

(Remember that T? isa[d™ x d™ ] matrix with the two extra labels indexing it as one
of the algebra generators.) A matrix A*,, is an invariant matrix if it commutes with
the generators (the invariance condition (2.5) is an example):

T3A—ATS =0. (A.6)

In particular, matrices T? = T;Tg, T3, T4, -« - are invariant matrices. If a represen-
tation V; is irreducible the quadratic Casimir operator T~ has a single eigenvalue

}),-T'2 = CiP,' N (A-7)
which characterizes the representation. For the defining representation V, which is
by definition assumed irreducible,

4 .
(T?", 5 =7’" 55 (A.8)
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The dimension of the algebra d 4 arises because by (A.4) Tr T>=Tr Ps=da. Thisis
my normalization convention for the generators T .

Instead of computing C;, which is defined only for the irreducible representation, it
is more convenient to compute tr P.T?, whichis a pure number for any subspace V,.
As an example consider T acting on the V®V space:

(T8 =(TauTHEE
=(T%)°, 585 +85(T)p, " — 20 (Pa)ik .
Here o( ) is the index permutation (4.9). Substituting (A.8) one obtains

2d
Taz—gél—zagu). (A.9)

To get more specific, consider the adjoint representation P = P from (4.7):

Pe(o(B)—aror(Py)) = ~22%7 p . (A.10)

(s X 3mal ¢ 4] deg— 7

Peo(Ps) =

Collecting (4.15), (4.17) and (A.9) one gets

4(d +
TP T =g, N (A.11)

(In another words Tr PA T = i (Ciix )%, where Ciix are the structure constants of the
Lie algebra.) Tr P,T? for any other V; can be computed in this fashion. However, as
the normalization conventions differ [the present one is fixed by (A.8)], it is natural to
define a normalization independent Dynkin index by

_ Tt PT?

= 12
Tr PAT? (A.12)

Like the dimensions, Dynkin indices satisfy simple sum rules. If a representation is
reducible, V, =V, ®V,,®- - -V,, then

L=+l + - 1,. (A.13)
In the particular example we are considering, one can use (A.8) and (A.12) to
compute the Dynkin index for the defining representation of sect. 4:

_ 16-d
T Ad+2)

(A.14)

Indices for the representations constructed in this paper are listed in table 2. Again
the corresponding indices for the E; family of solutions are obtained by replacing
d - —d. Their numerical values are listed in table 4.
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Appendix B

NEGATIVE DIMENSIONS AND CLASSICAL GROUPS

In the introduction I have alluded to a general relation between SO(d) and
Sp(—d). Itis a relation that is implicit in the representation theory of Lie supergroups
[23, 24]. This type of relation is best illustrated by the representations of SU(n). Let A
stand for a Young tableau, and A for the Young tableau obtained by flipping the
original tableau across the diagonal. Then the dimensions of the two tableaux,
expressed as polynomials in d, are related by

’ di(d) = (=1)"dx(—d) . (B.1)

This is evident from the standard recipe for computing dimensions of SU(d)
representations [25]:

d d+1 | d+2 | d+3

d—1 d d+1

(B.2)

Clearly, flipping the tableau across the diagonal (exchanging symmetrizations and
antisymmetrizations) amounts to the replacement d -» —d in the dimension formula.

Irreducible tensorial representations of SO(d) are obtained from the irreducible
tensors of SU(d) by subtracting all possible traces formed with the invariant g*” from
(3.1). This procedure is described in sect. 10-5 of Hamermesh [26], and the
dimension formulas are given by King and Murtaza and Rashid {27]. As g*” is
symmetric, it can be used to contract indices in the same row of a Young tableau, but
not the indices in the same column. For example, the dimension of the SO(d)
representation corresponding to [T 11 is td(d —1)(d +4), different from the

corresponding SU(d) representation, but the dimension of E representation is

$d(d —1)(d —2) for both SU(d) and SO(d).

Irreducible tensorial representations of Sp(d) are obtained from the irreducible
tensors of SU(d) by subtracting all possible traces formed with the skew-symmetric
invariant g"* of (7.1), as described by Hamermesh [26]. The dimension formulas are
given in ref. [27]. Due to the skew symmetry of g*”, indices in the same column of
Young tableau can be contracted, but not the indices in the same row. For example,

the dimension of E representation of Sp(d) is :d(d +1)(d - 4), different from SU(d),

but the dimension of [T 1] representation is td(d +1)(d +2) for both SU(d) and
Sp(d). We note that SO(d) and Sp(d) dimensions are related by d > —d.
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In general, flipping an SO(d) tableau across the diagonal means not only that we
have exchanged antisymmetrizations and symmetrizations, but also that we have
traded in a symmetric ¢g*” for an antisymmetric g**, i.e. the flipped tableau
corresponds to an Sp(d) representation. Indeed, King [27] has proven that (B.1) also
holds when d, is the dimension of the SO(d) representation associated with the
tableau A, and d, is the dimension of the Sp(d) representatién associated with the
flipped tableau A. d > —d relations also apply to Casimir operators (cf. tables 2 and
4); this shall be described elsewhere [2].
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