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I prove that in covariant gauges quark and gluon mass-shell renormalization constants
obey Ward identities analogous to those of QED: Z = Z5 and Z4 = Z3. This implies that
the mixing of ultraviolet and infrared singularities is not a peculiarity of dimensional
regularization but a consequence of the Ward identities.

1. Introduction

The increasing phenomenological success of quark ideas raises hopes that the
colour [1] Yang-Mills theories [2] might provide a theoretical underpinning for
quark models. Theorists® strong aesthetic prejudice in favour of gauge theories is
here complemented by two experimental facts: the fall-off of Yang-Mills effective
coupling with energy [3] fits the observed deep inelastic scattering, and the ill-
understood low energy behaviour might be the theory’s principal virtue if it leads
to confinement of colour particles [1].

The goal of the present and subsequent papers [4] is to explore this Iatter fea-
ture of non-Abelian gauge theories by studying quantum chromodynamics (QCD),
a theory of equal-mass ( # Q) quarks of n colours interacting through N strictly
massless gluons, with couplings related by a simple Lie algebra. QCD will be defined
through its Feynman diagram expansion. Even though this conservative approach
might miss much of the rich structure of Yang-Mills theories [5], it is not known
whether it falls short of accounting for the observed quark phenomenology, and it
is still important that the information contained in the QCD perturbation series be
thoroughly examined.

Low energy behaviour of QCD involves two distinct unsolved infrared (IR) prob-
lems: rwinkling * and infrared slavery [1]. Twinkling is a technical problem of
properly defining the transition rates in the presence of coloured massless particles.
{I1ts QED analogue was first solved by Block and Nordsieck [7]). Masslessness of
the gluon precludes separation of a bare quark from its soft gluon cloud (the quark
colour “twinkles”), and the transition rates must be expressed in terms of the overall

* The term “twinkling” was introduced by Comwall and Tiktopoulos [6] in a slightly mare
restricted sense than the one used here.
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colours of external particles taken together with their soft gluon clouds, and inte-
grated over finite energy resolutions. A low energy gluon can be called soft only if
its colour cannot be used to determine what particle it came from — this condition
is satisfied automatically by the Lie algebra closed by coupling strengths.

QED suggests two methods for solving the twinkling problem. In the first ap-
proach [8,9] one should explicitly factorize all virtual gluon IR singularities in
S-matrix elements, as well as the real soft gluon bremsstrahlung singularities in
transition rates, and demonstrate the cancellation between the two. As a bonus one
abtains the leading radiative corrections for small finite energy resolutions. Due to
the negligible recoil of an electron in a soft photon emission, soft photons are un-
correlated and all QED IR singularities are described by exponentiation of one-loop
IR singularities. In QCD all lowest non-trivial order calculations [10—13] show that
IR factorizations and cancellations stili go through, but with one essential difference
— recoil of a soft gluon due to the emission of further soft gluons cannot ne ne-
glected, and soft gluons do not act independently [9,14,15]. So far this difficulty
had frustrated formulation of an all-order 1R factorization procedure — it is very
unlikely that one-loop 1R integral will describe all 1R singularities of QCD ampli-
tudes. If it furthermore turns out that QCD is a confining theory, the IR factoriza-
tion approach might be unnecessarily detailed in the sense that the leading radiative
corrections so obtained will have no physical significance.

For these reasons the second method of proving IR finiteness of QED [16,17]
might be more cogent to QCD. Here one forgoes explicit factorizations of virtual
and real photon (gluon) IR singularities by looking directly at the transition rates
and showing that if all indistinguishable processes are included, the (unrenonmalized)
transition rates are 1R convergent (except for some exceptional values of external
momenta). In other words, if a transition rate is finite in the lowest non-trivial order,
the entire (unrenormalized) Feynman diagram series will not introduce any overall
IR divergences. By avoiding explicit disentangling of IR singularities, Kinoshita’s
[16] approach also avoids complications due to the non-commutatively of QCD
couplings, and in the one all-order example worked out so far [4,12] works the
same way for QDE and QCD. Even though a general proof is lacking at the present
time, I shall assume that QCD twinkling is a solved problem, and that the unrenormal
ized QCD transition rates are infrared finite.

Renormalization brings us to the second QCD infrared problem: does the behav-
iour of effective coupling and/or quark mass at low anergies give rise to infrared
slavery (confinement)? While for QED the low energy coupling goes to a finite limit
a= 13771, the QCD coupling appears to be blowing up. 1t will be my 2im to give
this statement a precise meaning by exhibiting the coupling TR singularities as a
formal perturbation series, in the hope that this will ultimately lead to a form of
soft quark-quark potential useful for bound state calcuiations. The idea is to study
QCD in three steps *.

* A very similar programme has been independently proposed by Sugamoto [13].
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(i) Define the bare QCD in the usual way, as a Feynman diagram expansion in
go- 2- and 3-external-leg diagrams evaluated at renormalization momenta yield re-
normalization constants. I shall prove that on the mass-shell renormalization con-
stants satisfy Ward identities of QED type (Z; = Z,, etc.), and show that these are
respected only if the regularization permits mixing and mutual cancellations of
ultraviolet (UV) and IR singularities.

(ii) As an intermediate step renormalize QCD on the mass-shell [13,18]; now
QCD is a UV-finite formal power series in the mass-shell coupling g. Invariant regu- -
larization makes this a well-defined step whose aim is to uncover the low energy
behaviour of the effective coupling. In both QED and QCD mass-shell renormaliza-
tion induces IR singularities, but while in QED these cancel by Ward identity, in
QCD they do not. The UV-IR connection established in (i) will now show that this
IR singularity is controlled by the renormalization group for the pure Yang-Mills
fleld. The formal expansion in g is reminiscent of the bare coupling expansion in
QED; there both e and the coefficients in the perturbation expansion are UV di-
vergent, and the precise form of UV singularities of the coefficients yields the re-
normalization group [19] for the effective couplings at finite energies. In the mass-
shell QCD both g and the coefficients in the perturbation expansion are IR divergent,
and the precise form of the IR singularities of the coefficients controls the way in
which the effective coupling gep diverges at low energies.

(iif) Finally, QCD should be rewritten in terms of some effective coupling charac-
teristic of quark bound states, with the low energy controlled by (ii). I have no pro-
gress to report on this crucial phase of QCD confinement theory. In particular,
while the steps (i) and (i) clarify the role of the renormalization group for QCD
low energy couplings, this information can be useful only if more is known about
the behaviour of the renormalization group function f(g) at large g

The present article, which is a detailed discussion of the results announced in the
one-page preprint ref. [20], covers the step (i) of the above programme. In sect. 2
I review and extend *t Hooft’s identities [21] from which in sect. 3 T derive the
mass-sheil identities. In this I use the original combinatoric approach of *t Hooft
rather than functional formalism, because the diagrammatic notation is very con-
venient for perturbative calculations carried out in seci. 4. These are used in sect. 5
to verify the Ward identities and establish that the UV-IR singularity mixing is not
a peculiarity of dimensional regularization, but a consequence of the Ward identi-
ties. In sect. 6 I discuss gauge dependence of the mass-shell renormalization con-
stants. The appendix reviews the location of UV and IR divergences in the Schwinger
and Feynman parametric representations, and gives the parametric space Feynman
rules for QCD.

An application of the above results to QCD infrared problems has been outlined

in ref. [12]. This will be discussed in detail in the subsequent article [4]. ’
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2. ’t Hooft’s identities

In this section I shall review the combinatorial derivation of ’t Hooft’s identities
[21] and extend them to QCD Green functions with external gluons, quarks and
ghosts. [ shall follow the original approach of *t Hooft as developed by Lautrup [22].

The basic object in Lautrup’s approach is the momentum space amputated Green
function '
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and the requirement that all vacvum bubbles (disconnected diagrams with no ex-
ternal lines) vanish. The uninteresting external legs can be suppressed (as on the LHS
of (2.1), or in (2.2)) and the box by itself can be thought of as Z, the generating
functional for disconnected Green functions.

The Dyson-Schwinger equations have a simple intuitive interpretation: (2.2a)
says that a gluon can either go through without interacting, or end in a 3-gluon,
4-gluon, ghost or quark vertex. The factors 1/21, 1/3! assure a correct combinatoric
weight for each Feynman diagram. Green functions are symmetric in external gluon
lines and antisymmetric in all in- or out-quark lines. The following two examples
illustrate how the compact notation relates to the full Green function notation
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Falb sl s

The box is really just the sum of all Feynman diagrams with a given number of
external legs. Let me illustrate how they are generated by (2.2) with a simple ex-
ample, the gluon self-encrgy at one-loop level. (2.2a) gives

0 - — 15t -0
Using (2.2) again and keeping only g terms

SEEE T e

where the subscript 0 on 4-gluon Green functions means that they are of order zero
in the coupling constant, i.e. completely disconnected. From (2.2a)

[;;J =n@.nﬁl+g=n(’].m.@

Substituting this above we obtain the g3 order gluon propagator

O 1039 -t -0

2.3)
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n

with all correct signs and combinatoric factors.

In this manner the iteration of (2.2} generates all Feynman diagrams: colours
of internal lines are summed over and in loops the loop momenta are integrated
with a factor

4
f(z,n,)4—e
for each loop. This, together with vertex and propagator factors defined in figs. 1
and 2 yields all contributing Feynman integrals (1 follow the conventions of Bjorken

and Drell [23]). I shall discuss how the dimensional regularization takes care of
both UV and IR singularities in sect. 5; for the purposes of the present and the next

section I merely assume that there exists a regularization which allows shifts of inte-

gration momenta.
The QED combinatorial proof of the Ward-Takahashi identities follows from a
trivial identity :

e = e i (.4)
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Fig. 1. Feynman rules for QCD. Propagators: (a} gluon in covariant gauges, (b} ghost, (¢) quark.
Vertiees: {d) quark-gluon, (e) quark mass counterterm, (d} 3-gluon, (g) ghost-gluon, (h} 4-gluon.
(i} Symmetrization symbol — combinatorial factor insures idempotency, i.e. that two consecu-
tive symmetrizations are the same as one. For the notation see figs. 2 and 3.

ie., il =i} +§ — m) — i(g— m). In QCD this identity applies as well (Lautrup’s
slashed line notation now keeps track of colour indices), but further identities for
the insertion of k* into 3- and 4-gluon vertices are needed. As such vertices are sym-
metric in all gluons, it is convenient to introduce a symmetrization symbol [24,25],
and write 3- and 4-vertices in a compact diagrammatic form as in fig. 1. To extend
(2.4) to QCD one also needs the Lie algebra relations between quark-gluon and
gluon-gluon couplings (77)5 and —iCyj. The diagrammatic methods for this have
been developed in ref. [24] (see also (A.9)). In the notation of fig. 2, which com-
bines momentum and colour factors, some examples of such relations are

Mo - X 050

>=;:\ ; A | k (2.5b)

As a slashed line means that the momentum-space propagator is absent, these are
purely group-theoretic relations. Another convenient diagrammatic relation is a
statement of momentum conservation (% + k4 = — &%)
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Propagator numerator factors
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Fig. 2. Combined diagrammatic notation for the group-theoretic and momentum space factors.
For each numecrator factor sandwiched between two dots, an additional i (ff — m)~? factor for
a quark, and —z'p_2 factor for a gluon or associated auxillary particles. In the Feynman-para-
metric space, rule 5 of the appendix, replace p* numerator factor for internal linc i by D{".

__"_ = _'_ +

Fig. 3. Sign conventions, some relations. Gluon colours are read anticlockwise around the vertex
Cijk- and care must be exercised that interchanges of legs are compensated by minus signs in
diagrammatic eguations.
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’t Hooft’s identities for bare 3- and 4-gluon vertices now follow

%T/\ é‘ = r&_é (2.72)
& A %T:gg,: (2.7b)

as well as a further identity

E@P -0 (2.8)

Now apply the pure Yang-Mills Dyson-Schwinger equation {(2.2a) without quarks)
to a particular Green function

Y

where all suppressed external legs are gluons (no other ghost lines than the one ex-
plicitly drawn). A ghost vertex can lie either on a ghost loop or on the incoming
ghost line, hence the last two terms in (2.9). They add up by the momentum con-
servation (2.6). On the second and third terms we apply the identities (2.7), and the
kMK term from (2.7a) cancels most of the left-hand side of (2.9) by the Dyson-
Schwinger equation (2.2¢). (That was the reason why I started with the Green fune-
tion of (2.9).) This all leads to

H.
;

* (2.9)

(2.10)

; ATT: i
7 :

Now use again the Schwinger-Dyson equation (2.2a) for the second term, and (2.2c)
for the last term

(2.11)
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The third and seventh term vanish by the antisymmetry of Cjjy, the fourth by (2.8),
and the fifth, sixth and eight cancel by the Jacobi relation (2.5a), yielding *t Hooft’s
identity [21] for the pure Yang-Mills theory

I__L|='TD (212)
t

This is valid in all covariant gauges because the transverse projection appearing in
(2.72) assured that the A* k¥ part of the gluon propagator does not affect any of
the cancellations that went into the proof.

(2.12) is easily extended in two ways. First, the full QCD (2.2) together with
identities (2.4) and (2.5¢) incorporates the quarks. Second, if there are external
ghost lines going through the box, each application of the Dyson-Schwinger equa-
tions {steps (2.9) and (2.11)) yields an extra term corresponding to the possibility
of attaching a gluon to those lines. The resulting extended 't Hooft’s identity for
QCD Green functions with external gluons, quarks and ghosts is given in fig. 4. This
is the main result of this section. Its meaning is that no longitudinal gluon can couple
to mass-shell quarks and gluons [21].

For renormalization purposes it is necessary to introduce also amputated con-
nected Green functions (I shall denote them by circles) which are obtained from
“boxes”™ by dropping all disconnected diagrams and all self-energy corrections to
external lines. For example

I%Iuag.[&q.w.m (2.13)

To rewrite 't Hooft’s identities in terms of these it is convenient to introduce the
notation

s (2.142)

{note that this fixes a sign convention)

= .. (2.14b)

and the inverse self-energies defined by

= — (2.152)

= —— (2.15b)
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L1

Fig. 4. ’t Hooft’s identity for QCD Green functions with external quarks, gluons and ghosts.

In terms of connected amputated Green functions (with external quarks and
gluons, but no ghosts) *t Hooft™s identity is given by

& & @
O (2.16)
-1

(This suppressed external leg notation is related to the full notation as in (2.3).)
Further expansion in terms of one-particle-irreducible Green functions leads to the
Lee-Kluberg-Stern-Zuber [26] identities. (1t the derivation of (2.16) 1 have used
the transversality of the gluon propagator — this will be justified by (3.5).)

3. Ward identities

In this paper the term “Ward identities” will.be reserved for the relations be-
tween renormalization constants evaluated on the mass-shell.
Consider 3(k - G)/3k,, where G, is a quark-quark-gluon Green function (colour
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and spinor indices suppressed). G, is related to the proper vertex T'y by (2.13)

-|i|-— - ﬂ-é])-m-» 3.1
b
i
p.k/)'&%\‘\p =i (Ti)z r‘ﬂ(pdt.p) (32)

b a

The quark mass-shell renormaiization constants are defined by

rebee

e
- 7, rede (3.3b)

where the quark mass counter-term had been used in (3.3b), so the extra propagator
picks out the first derivative of the self-energy, Z; = (p,,/m) 3S/3p*, evaluated on
the mass-shell. (In sect. 4 such renormalization constants are computed explicitly
to the one-loop level.) 't Hooft’s identity fig. 4 for the 2-gluon Green function is

..D_ = e 4+ ...|_ (3.4)

In covariant gauges Lorentz invariance requires

fa = K 00 (3.5

so the second term in (3.4) vanishes. Hence & - & has no contribution from the ex-
ternal gluen self-energy, and

{(3.3a)

22
2 {k-6) = e 2

Ku mass shell z |

(3.6)

Q)

Now re-evaluate (3.6) using 't Hooft’s identity:

%kﬂtk'G)mass shell = T ) .
M ; H
e Ur”«"-”i@« (3.7)

1 have used £ momentum routing of (3.2), noting that after differentiating fig. 4,
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k=0

(b)

{c)

Fig. 5. Proof of vanishing of the second term in (3.7). (2) by (2.6) and k* = 0. (b) by 't Hooft's
identity fig, 4. (c) by antisymmetry of the top Cijg vertex, Lie algebra (2.5) and momentum
conservation (2.6). The second term cancels the remaining two by (2.2¢).

everything vanishes on the mass-shell, except the (0/3k*) @ + ¥ — m) =¥* term.
The second line was obtained by expanding the ghost by (2.2¢). From (3.6) and
(3.7) it follows that 1 — Z,/Z, is proportional to the second term of (3.7), but it
vanishes as proven in fig. 5. Hence the mass-shell quark renommalizations obey the
same Ward identity in QED and QCD

Zl =Z'z . (3.8)

The Ward identity for gluon renormalizations is derived in the same way. The
gluon mass-shell renormalization constants are defined by

(H - %An_l-. (3.92)
>_L|j_. = Z, s (3.9b)

To avoid ambiguities due to the vanishing of the bare vertex as all momenta vanish,

I compute them at & = 0, p # 0 (the other possible choice consistent with p?=0

would be py =p, = —3 3 p3 #0). By the same argument as for the quarks, 1 — Z3/Z, -
is proportional to

ey, A
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= !T - ,-"’ (3.10)

by the antisymmetry of the top Cy;, vertex and (2.6). In the covariant gauges by
Loretnz invariance

..... <A H = R pY) (3.11)

vanishes on the mass shell. Hence the gluon renormalizations also obey a simple
Ward identity

Z4=2;. (3.12)

The above argument cannot be repeated for the ghost renormalizations, as
’t Hooft’s identity fig. 4 for the ghost-ghost-gluon Green function yields no mass-
shell vanishing factors on the external legs. Fortunately, the ghost renommalizations
are already related by the Slavniov-Taylor [27] identities. The ghost mass-shell re-
normalization constants are defined by

- '%_1. e (3.13a)

e = 3, e (3.13b)

The Slavnov-Taylor identities follow from (2.16). Consider 8 (% - I')/ak" on the
mass-shell, where Iy, is the 3-gluon proper vertex. Again only the derivative of
g% + k)t — (p + kK)¥ (p + k) survives, leading to the Slavnov-Taylor identity:

¥ k=0 - @
-1
Péq . Eu(%fﬁl) (3.14a)

1 1 Z
—=—=2 (3.14b)
This together with (3.12) yields the Ward identity for ghost renormalizations
Zi=Z5. (3.15)

Two remarks are in order. First, in deriving the above Ward identities I have
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used, beyond the assumptions necessary for 't Hooft’s identity (that there exists a
regularization procedure which allows shifts of integration momenta), the assump-
tion of Lorentz invariance in (3.5) and (3.11), so it is possible that general non-
covariant gauges obey more complicated Ward identities. Second, the derivation
did not rely on any assumptions beyond those used for the original Slavnov-Taylor
identities (those were also derived on the mass-shell). That the renormalization con-
stants also obey the stronger Ward identities (3.8) and (3.12) was first noted only
in explieit calculations [18,20].

4. One-loop contributions to the renormalization constants and magnetic moment

This section is rather technical, and a reader interested primarily in conceptual
consequences of QCD Ward identities should proceed straight to the next section.
Here 1 shali write down a series of one-loop integrals which will be used in sect. 5
for verification of the Ward identities. 1 calculate in covariant gauges and 4—e di-
mensions (e not assumed small), but the dimensional regularization { 28—30] is not
essential to my calculations. I shall write the integrals directly in the Féynman (or
Schwinger) parametric form using the rules summarized in the appendix. The transi-
tion from momentum space to the parametric representation assumes only existence
of a regularization scheme which allows shifts of integration momenta, and the
integrand of a parametric integral is unambigously defined in any dimension, in-
cluding four. This enables us [31] to split Feynman parametric integrals into their
UV, IR and finite parts. The non-UV parts so defined are simply related to the re-
normalized amplitudes (renormalized on- or off-mass-shell). The divergent parts can
be manipulated as unevaluated integrals: UV parts absorbed into renormalizations,
and IR parts kept around until they mutually cancel or combine into something
simpler. I mention this only as one possible alternative to the dimensional regulari-
zation: for the integrals at hand the dimensional regularization is more elegant, and
I shall not use the finite part prescription of ref. [31] here *. The analytic continua-
tions needed to evaluate dimensionally regularized singularities ** will be discussed

* Two remarks about the method developed in ref. [311. First, the UV, IR, finite part decom-
position doesn’t respect the Ward identities, in the sense that even though L +B = 0,‘ for the
finite parts AL + AB + 0. Second, in all QED integrals the separation of UV and IR is auto-
matic, essentially due to the non-zero electron mass. For QCD the method of ref. [31] has to
be modified for purely gluonic diagrams, as there is no automatic splitting of integrals into
sums of UV and IR singular terms. ’

** The often repeated statement that in the dimensional regularization UV divergences appear
in I‘(% ¢) factors, and IR divergencies arise from parameter integrations is true only'r for one-
loop Feynman parametric integrals. In general all singularities arise from parametric space,
UV divergences from vanishing of the parametric function U, and IR divergences from vanish-
ing of V' (z; p; m;). (See appendix and ref. [31] for details).
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in the next section: they do not affect the form of the integrands computed below.

On the mass-shell, the quark vertex renormalization L, the colour magnetic mo-
ment @, the mass counter-term 6, the wave-function renormalization B as well as
the gluon wave-function renormalization C are defined by (I follow the notational
conventions of Bjorken and Drell [23])

1
1+L=— =F|(0),
7 =Fi0)
M
a—m, (4.1)
om=%,
1 K
B:—:_PE_ az s
1—22 m 3p'u
C=—g%ﬂ'(0),

where the unrenormalized quark from factors are computed from (3.2)

_ _ id%g
e +iqp— 3@ u=Fi@)av'u +Fz(q2)u7"u

{from now on, # and « will be usually suppressed, and m = 1), and the (unrenormal-
ized) magnetic moment M = £5(0) is computed by dropping from I'** the numerator
terms proportional to g¥, g*p, ¥*, p"¢ or quadratic and higher in g

T > Ap" + Bp"p + Oy'p +1 Dy +} B

and replacing this remainder by its magnetic moment projection

M=—A+B+C+D+E).
Z(p) is the (one-particle-irreducible) quark self-energy
~i552@)= g (O (4.2)

and T1{g?) the (one-particle-irreducible) gluon self-energy

- O (4.3)

! |

@)= 4" - £”q*) 11(g*)

-
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As in QED, everything is expanded in a formal power series *
= n
M=2 Ma")(a—o) . etc., (4.4a)
n=1 m

where

an = g% m_e

8o Was introduced by rescaling all couplings 7; = o7}, Cijxc = £0Cijx- This is merely

a device for counting vertices. gg can be thought of as a coupling constant only if

the underlying group is simple, and the 7;’s have a fixed normalization (see ref. [24]).
The (2r)th order contribution is computed from all p-loop one-particle-irreducible
graphs &

M@ = 25 WweM, (4.4b)
G

where the group theoretic weight W contains all colour summations over T; and
—iCyx, and Mg is the momentum-space Feynman integral for the graph G.

Group theoretic weights are trivially dealt with. The contributing 1-loop graphs
are drawn in fig. 6. For quark graphs the theoretic weights are

(@) (DW= TPeTI TN s
®) (TIEW, = iC) T8 TN

(@ (TeW.= T TETNE,

or, in the diagrammatic notation of ref. [24], simply the diagrams fig. 6a, b, and ¢
by themselves. Multiplying the Lie algebra commutator {A.9a)

(TIFTNE — TN = (iCy)THE (4.5)
by (T;)§ we obtain a relation between weights
Wem W, =W, (4.62)

and similarly

_— B 1 . .
Wa=W,=Wr=LW,. (4.6b)
* The only deviation from the Bjorken and Drell notation is

g%vr = Z) ‘rr(2")(¢.'ar0_"1'r)"1 .
n=1
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q .
2 E ?
1
2 9
Pe3 p-
2 »«éy« 3 ¢ )-J-U-«
]
{a)

’
5 .
{b) (c)

¥ 11 " 2"
2, S 1
g
(a% (b*)
by 1
¢
H-LA—H 2"-,_.'.-‘2'
(bu-) {c+)
. 1 .
1
e Yoo O < - _(:}
2 ;
(d} : (e}

! = . _12_ H : ‘ | % _{.}_

[d*) {d**)

Fig. 6. Diagrams contributing to quark renormalizations and magnetie moment. (a)—{(d} Feyn-
man gauge contributions. (a*)—(d**) covarian{ gauges. Arrows on the lines indicate momenta
directions, and numbers label the corresponding Feynman parameters. 2 and z - appear only
as a sum zy + zy-; in the parametric integral we set zy + 217 — 2. (b**) vanishes for both [, and
M by 't Hooft’s identity (2.7a).

This is all the group theory needed for the verification of the Ward identity (3.8).
(The above example shows how much quicker it is to compute weights diagramma-
tically than algebraically: the diagrammatic notation of ref. [24] keeps automatical-
ly track of all dummy indices and signs.) :

" Next I write down the Feynman parametric integrals for all graphs of fig. 6, =7

using the rules of the appendix. In covariant gauges the integrals for the diagrams
aand b are of form

M= rd o fizea -z -1 4§ 0 s G50
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+E.F0+(a_1)F1 +F1+(a71)F2:|- (4.7)

5 pl+en2 pef2

For the quark graphs a, b and ¢ on the mass-shell ¥ =m?z, — p*z,z;=2%, and
scalar currents have been substituted by Ay =1 —z, 4, = —z, (z =2). The starred
numerators F; arise from k*&” /k® gauge terms — note that they have different
phase-space factors dzg.

Diagram a
fig. 6a: dzg =dzydz,z, ,

forL,  Fo=—2(-2+2+zH)+e?, F=-201-1e?;

for M, Fo=—4z(1 —z)+2ez(2—2)}, F;=0. (4.8)
ﬁg. 6a*: dZsz21d222122 5
forL,  Fp=-z*(2—z)*, Fi=2-(6—-¢(2-2)z,

F3=—4(@4—e6—e;
forM,, Fp=F}=F3=0. (4.9)

(Some details of the calculation from fig. 6a are given in ref. [32], sects. 3 and 5.)
Diggram b

fig. 6b: dzg =dz;dzyz, ,

forLy,,  Fop=(6—2¢)z?, F,=—6+2¢;

for My, Fo=4z(1 —z)+2ez? F;=0. (4.10)
fig. 6b*: dzg =2 dz;dz,23

forL,, Fg=0, Fi=-(3-¢)2—-2),

Fi=-43@-e(6-¢);
for My,  F5=22°(2—2), Fi=—4z+2Y8 —¢), F2=0.

(@.11)

The quark mass counter-term and the quark wave-function renormalization are -
computed from fig. 6¢ as in ref. [32], sect. 3.
Diagram ¢

€ @ 1)22Fy Fyp+@—1)z,F1
5me=zl;r(%f)fd21d225(1—21“22)[‘2‘ pirez © 2 ez 2 :|,
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e @—1)z,Ey Eg+@— 1)zyE}
Bﬁ},f‘(%f)fdhdzzﬁ(l*Zl—zz)l:i( Vl+ef§ Shien (Ve/z) =
@ — 1)z,Fp Fo+{@— DzyFy
+(1+%E)EG( V2+e/§ % +eG=2 y1+e2 2 1} (4.12)

with G =z;z,, and

fig. 6¢: Fo=2+(2—-¢€)z, Eo=—(2-e)1 —2z);
fig. 6c*: Fg=242 —2), Fi=—1+(3-1¢¢2,
Ey=(5-32)z, Ei=1-1e+(3-1o:.
Diagrams d
Nal@®)=-4T¢ &) [dzydzp5(1 -7, zﬁﬁ . @.16)
a’)
. Vg =—q*z12,
figs. 6d, d*, d**: I=4l -feyziz;p+ 1+ et (1 -a)E — o)+ (1 — 2)%e.
Diggram e
@) =4 TG &) [d2,008(1 ~21 — 2) i (417)
=1 —q%z,25 .

From the computation point of view it is interesting to see how the diagrammatic
notation of figs. 1-3, "t Hooft’s identities (2.4), (2.7) and momentum conservation
(2.6) simplify the above calculations. Two examples:

By (2.4), (2.7) and (2.6) diagram b can be reduced to

A z(“Aﬂ_L_L’A) | C(4.18)

The numerator operator ™ (defined in‘the appendix) can now be read off directly - - - - - -

from the above diagrammatic expression, The contribution to Ly, from p- I(p, p) is
F=2{-0+0+D}-1)— (@ D)@+ D],
which then, by the rules of the appendix, yields Fg and F; listed in (4.10).
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Similarly, fig. 6d can be diagrarnmatically reduced to

(@ = 2 K+ 05w ez 2 603 ) (4.19)

At this stage transversality is not manifest, except for the first ternm. The correspond-
ing Feynman-parametric integral is

v

1
N =40Ge) [ondzad(l -z - 2) [F‘é" +y IF%“] (4.20)
2

(group theory already factored out by (4.4)), where F; can again be simply read off
(4.19) from the rules of the appendix

B =@ - "2+ (1 - § olg*d" — 4] + 43) ¢*s™ + 44, 4,9%¢"] ,
- —30-39[ —206-¢ g+ 4 ],
and the inregrand becomes explicitly transverse

21229°
1-le

g+ P = @"q" - g"qP)[-1 —je—4z42,(1 - j )] .

This miracle has occurred prior to Feynman parameter integrations because Feyn-
man parametrization already exploits the freedom of momentum integration shifts.
If the seagull {(diagram with a 4-gluon vertex in fig. 6d) were omitted, (4.20) would
bscome transverse only after parametrix space integrations.

5. Regularization of infrared and ultraviolet divergences -

In the derivation of QCD Ward identities I have assumed that there exists a regu-
larization which

a) allows shifting of integration momenta;

b) preserves Lorentz invariance.
In this section I shall establish that any regularization which respects QCD Ward
identities also

¢) mixes infrared and ultraviolet singularities;

d) sets equal to zero any Feynman integral free of an intrinsic scale.
{An integral has no intrinsic scale if all internal propagators are massless, and for all
combinations of external momenta flowing through the diagram, p? =p;* p; = 0.)

This will follow from the verification of the Ward identities by the one-loop inte-
grals of the preceding section. I shall discuss them at some length, but the essential
observation is this: we know from QED that the integrals # and ¢ of fig. 6 are IR
divergent, and that apart from the group theoretic weights, their IR divergences are
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the same and have the same gauge dependence. However, the integral & (fig. 6) has a
different IR divergence, e.g., in Feynman gauge b is IR finite, but ¢ and ¢ are IR
divergent. We also know from explicit verifications of off-mass-shell Slavnov-Taylor
identities that their UV parts differ. Hence for Z, = Z, to be true, UV and IR singu-
larities must add up. We already knew that the dimensional regularization does pre-
cisely that [29,33—35], but now we learn that this UV-IR mixing is a general conse-
quence of the gauge nature of the theory. Pursuing the same line of thought we
conclude that Z, = Z; also implies UV-1R cancellations, because we know from the
Slavnov-Taylor identities that the UV singularities alone do not satisfy Z; = Z3. Ex-
plicit evaluation shows that this requires the gluonic contributions to the mass-shell
Z4 to vanish. On the surface this UV-IR cancellation looks quite different from
those that.took place in Z; and Z,, but a closer look reveals that it occurs by the
same mechanism as the UV-1R cancellations in the Z; (or Z,) gauge terms; further-
more, it is the same mechanism that leads to the vanishing of the tadpole diagram
in fig, 6d, on mass-shell or off mass-shell. Therefore UV-IR cancellations occur the
same way for QCD quark integrals and purely gluonic integrals, on or off the mass-
shell.

To demonstrate the above observations in more detail, 1 proceed to evaluate the
integrals of the preceding section. Contrasted with the starting expressions, the re-
sults are strikingly simple:

3—¢€
La=Lb=~BC=8mc=%F(%e)_1 —

My=3T(1+1e),

My=-3T(Ge)

2
1 ¢ (IR singular only) , (5.1)

Cd=0=

C.= Tkel.

The first surprise is that they are all gauge invariant. It is also amusing to note
the simplicity of the Schwinger correction M,. This is IR finite because the quark
mass sets the scale for the energy of the virtual gluon; for My, such mass scale is
lacking, and arbitrarily soft virtual gluons contribute.

The above dimensional evaluation was straightforward, but a closer look reveals
that most of the integrals have to be defined by a two-fold analytic continuation,
both from above and below four dimensions [29,30,34] and this might cause a cer-
tain amount of worry — are integrals defined by such continuations really unique?
Furthermore, 1R singularities in quark renormalization constants look different
from the g2 - 0 singularity in gluon renormalization constants — can they all be
called IR singularities and regularized in the same way? To answer these questions,

-
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1 shalt re-evaluate (5.1) keeping this time track of IR singular terms, and leaving
open the option of regularizing them by other methods.

In quark renormalization constants the IR singularities arise from the z; = 0 end
of integration. 1 label them by defining

dz
e ShTG e +1. (5.2)

1
L 1

—ira+ie Of .

In the dimensional regularization (5.2) is defined by analytic continuation from

€ <0, and I = 0. In other regularizations 7 # 0; for example, if the gluon were mas-

sive (V = A2z, + z% on the mass shell, A2 = 0), in the e = 0 limit the left-hand side

of (5.2) would be replaced by

1
z
_%(]fdzz,_,_l_?\z:%ln?\. (5.3)

Re-evaluation of (5.1) now separates our IR singular terms as factors of [ with
coefficients

L= 4+2(1 te)l —a),

Ly= (-3+eXl—a),

B,=»—4-2(1+e)1 —a), (5.4)
dm,—=>0,

M;,—0,

My—=4+1e(l —a).

(Note that IR and UV singularities are separateiy gauge dependent.)
The Ward identity (3.8}, rewritten in terms of the one-particle-irreducible renor-
malization constants, states

L+B=0. (5.5)
Using (4.6a), (5.1) and (5.4), explicit one-loop calculation yields
Walg+ WLy + WeBo= Wpl[—4 — (5 + el(1 —a)] . (5.6)

Hence, the Ward identity is violated unless

{a) Wy =0; QED allows arbitrary IR regularization.

(b) F=0; dimensional regularization is a consistent regularization of QCD IR.
As argued above, the crucial feature is the mutual cancellation of UV and IR singu-
larities.
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In the gluon renormalization constants the IR singularities arise from g2 - 0
limit. The reason why this looks so different from the z, - 0 singularity of the quark
renormmalization constants is that in the Feynman-parametric representation the
quark mass provides a natural way of decomposing the integral into a sum of an GV
part (Fy term) and an IR part (Fg term). For the purely gluonic integral (4.16)
there is no such intrinsic UV-IR separation. To see that the g2~ 0 limit reallt gives
rise to 1/e IR singularity it is instructive [18] to rewrite (4.16) in exponential form
(this is related to the Schwinger-parametric form by a rescaling of z; — see the appen-
dix and (A.4))

1 oo
] dz
14(q”) = —3 12 f dzydz8(1 —z4 —22)1_[ L1-ej2 expl—iz(—q°z,25)] -
0 0
5.7

If g? # 0, this has an UV singularity from the z = 0 region, but the potential IR
singularities from the z - o= end are damped by the exponential. The integral can

be defined by the analytic continuation from ¢ > 0. However, if g% = 0, an IR singu-
larity appears from z - o end, and the integral is uniquely defined [36] by

@ 1 4
[ o= ) e ) e o, 58
0 0 1

where the first (UV singular) piece is continued from e >0 and the second (IR
singular) is continued from ¢ < 0. IR singularity is again a simple pole of 1/e type,
and while separately UV and IR poles have complicated gauge dependence, their
mutual cancellation is total. The cancellation occurred because with V=0 (all
m?=0,allg; g;j = 0) any Feynman integral, no matter how complicated, vanishes
due to the factorization of the overall scale integral (5.8). Hence it is not necessary
to compute gluonic contributions to the 3-vertex renormalization Z, — we already
know that those will vanish as well. To see whether the regularization (5.8) is dic-
tated by the Ward identity Z, = Z3, we can try othet IR regularizations (such as
cutting off the upper end of the integral (5.8)) by defining

i

~ dz 1
=— +I. 5.9
lfz.l_E de (5.9)

Again it is not necessary to compute Z4 explicitly: we know from the Slavnov- -~ s e

Taylor identity for UV poles that [Z/Z51uy = [Z4/Z3]uv, hence the IR singulari-
ties have a different gauge dependence, just like in (5.4), and again I’ = 0 by the
Ward identities.

One might still be sceptical about the claim that IR singularities of (5.2} and
(5.9) should be treated on equal footing; even if they are defined as singularities of

.
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Schwinger-parametric integrals for z; >, in (5.2) they come from the region

zy << 2y, 22 > and in (5.9) from z, +z4 = ==. Therefore it is instructive to note
that a portion of quark IR singularities can be defined either by (5.2) or by (5.9).
In (4.7) to (4.15) I have evaluated gauge terms F; by parametric rules, and con-
tinued IR singularities by (5.2). Explicit evaluation shows that all gauge-dependent
terms fully vanish by UV-IR cancellation. That is easy to understand by applying
the Feynman and ’t Hooft identities {2.4) and (2.7) prior to Feynman parametri-
zation. For example, for diagram fig. 6a*

b=
{a®) = - h-o-,-l-'-—q = const, _[(‘1:_2)2 (510)

This integral lacks internal scale and is regularized to zero by (5.8). Hence (5.2) and
(5.9) are equivalent regularizations of the IR singular parts (the definitions of asso-
ciated finite parts are inequivalent; for (5.2) the finite part arises from the decom-
position of the parametric integral in Fy : Fy, ... terms and for (5.9) from the ad hoe
lower limit of integration).

UV and IR singularities of diagrams of arbitrarily high order will be treated in
the subsequent paper [4] along the lines of ref. [31].

6. Gauge dependence of renormalization constants

In the notation of sect. 2, the term linear in (1 — ) for an arbitrary Green function
is of the form (external legs suppressed) [22]

!
L (6.1)

-

In QED the linear term yields the full gauge dependenee of the renormalization
constants. Consider the gauge contribution to Z5 of (3.3b) and apply the Ward-
Takahashi identities (QED version of fig. 4)

(6.2)

1—a fd“—fk

M0) = onJ @ (6.3)
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the gauge term has factored out explicitly. Carried out to all orders, this leads to
the Johnson-Zumino [38] result ‘

Z37% = exp[—iedN0)] Z2 . 6.4)

As before, M0) =0 in dimensional regularization, and in covariant gauges the QED
reniormalization constants are gauge independent. The above exponentiation is of

some relevance to the study of IR behaviour, because if the IR part of A(0) is sep-

arated out by (5.9), (6.4) tells us that the gauge dependence of the IR singularities

of QED renormalization constants is given by the exponentiation of a one-loop IR
singularity. In a similar way an understanding of gauge dependence of QCD renor-

malization constants sheds light on the form of QCD IR singularities.

For pure Yang-Mills theory gauge independence of all mass-sheli renormalization
constants is trivial — by the results of the preceding section, all Z; = 1. Parentheti-
cally, this does not mean that mass-shell QCD is not renormalized; rather it means
that mass-shell renormelization has transmuted all UV singularities into IR singulari-
ties of the precisely same form. I shall discuss the renormalization in the subsequent
paper [4].

For QCD the situation is not so trivial, due to the presence of massive quark
loops. For QCD I have verified the gauge independence of renormalization constants
only at one- and two-loop levels. The gauge temms vanish by the general properties
of QCD regularizations listed at the beginning of sect. 5.

[ would like to thank J.C. Taylor, A. Mueller, S. Joglekar, C.T. Sachrajda,
E. Eichten, A. Duncan, S. Adler, S. Brodsky, H. Osborn and P. Oleson for stimulating
discussions, and in particular B. Lautrup for providing me with his unpublished
notes.

Appendix

Feyrnman-parametric integrals

Here [ shall sketch the Feynman-parametric methods for isolating UV and IR
divergences (discussed in detail in ref. [31]) and state the rules for constructing
QCD momentum integrals directly in Feynman parametric form. In the context of
the present article this is merely a convenience which streamlines the one-loop cal-

culations of sect. 4, each of which could be easily done by the usual two-step proce- 7

dure of first writing a dimensionally regularized momentum integral, and then intro-

ducing Feynman parameters. However, parametric methods will be essential for the

analysis of arbitrary order Feynman integrals undertaken in the subsequent paper.
Schwinger parametrization. Schwinger parametrization starts with a replacement
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of the denominator of a Feynman propagator by a parametric integral

—i r o2 2
Tl—z = f dz e772@"-m7) ‘ (A1)
[

If p? — oo, the dominant contribution is from z = 0. From now on z - 0 will be
referred to as the ultraviolet limit in the parameter space. If p? > m?, the integral
is not damped for z — =o; this is the infrared limit in the parameter space. Parame-
trizing in this way all propagators, shifting, diagonalizing and integrating over all
internal momenta one arrives at the Schwinger-parametric representation of the
Feynman integral associated with diagram G

dzg Fy F —iV
fﬁm (F0+E+W+...]e e (A2)

U/ is the Jacobian of the transformation from the momentum integral to the pa-
rametric integral. It is a topological function of the loop structure of G, and can be
read off diagram G by elegant group-theoretic formulas. (For one loop IV = zg, for
two loops U = 2,24 + 242, + 252, €tc). 1t vanishes in the UV region of the para-
metric space, making the integrand of (A.2) singular. Vanishing of the parametric
Sunction U gives rise to ultraviolet singularities.

All dependence on external momenta and internal masses is contained in the
functions F; and V, which are themselves expressible in terms of pure parametric
functions 4; and Bj;.

The scalar current A; (a set of those for each independent external momentum p)
is a fraction (|4;| < 1) of the external momentum p flowing through the line £ The
parameter z; plays the role of “resistance” of the line {, in the sense that as z; >0
(faster than all other z;), 4; > 0 (no current flows through a line of infinite resis-
tance). If i is a gluon (photon) line, A; = 0 describes the infrared regime (the gluon
has vanishing momentum). This affects the function V, which, if it vanishes for
some z; = <o, fails to damp the high end of the integral (A.2). For example, for the
mass-shell quark vertex with a single quark line going through and a cloud of gluons

V= 2 z;(m? — A;p?), pr=m?=1 (a.3)
i=quark
and when all gluons z; = oo, all the momentum flows through the quark line (4; > 1
for quarks) and (A.3) vanishes. Vanishing of the parametric function V as some
z; — %o gives rise to infrared singularities (the possibility of V vanishing on some
hypersurface will not concern us).

By arises from integration over r‘,“rj” , where r; is the sum of internal integration
momenta flowing through line i It describes the change in scalar current A; through
line 7 due to the change of resistance z; of line f, and in ref. [39] it was shown that
By can be used as the basic block for constructing all other parametric functions.
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Fd, Fy, F, ... arise from the numerator terms with the 0, 1, 2, ... factors of the form
#'r}, and the corresponding terms in the integrand of (A.2) have successively more
severe UV singularities. ; by themselves are non-singular functions of By, 4, p
and m;, and can only moderate UV or IR singularities, not enhance them.

To summarize, in Schwinger parametrization UV singularities arise from vanishing
of Uin the z; > 0 ultraviolet region, and IR singularities arise from vanishing of V
in the z; + = infrared region. (Full analysis of overall and sub-divergences is carried
out in ref. [31]).

Feynman parametrization. Evaluation of (A.2) starts by the observation that the
parameters z, have no intrinsic scale, so that an overall scale z

Z;>22;, EZ,'=1

can be integrated out by reversing (A.1)

f dz 2 le 7V = —(*il);,r (2 (A9
4]

The integral brought to this form is called Feynman-parametric. By analogy with
(A.1) 1/V" is a generalized propagator for the entire graph with effective mass
T z;m? and effective squared momentum

1 {
G-—5 Zzizj'Bij(Qi' aj) »

where ¥ = Zz;m? — G. In Feynman-parametric space the integration region is com-
pact and infrared divergences arise from integrand singularities (1/V = =0) on the
edges of the integration region (2 z; > 1 for some set of lines). Detailed analysis [31]
shows that ¥ will not vanish sufficiently rapidly unless the effective mass Z z;m?
vanishes as well.
QCD Feynman rules

The rules for writing down a QCD-invariant amplitude are the same as those
given for QED in sect. 2 of ref. [39], with rules 4 to 6 replaced by the following
rules 4 to 7.

Rule 4. Construct the parametric integral

i [ dzgd(1 —2¢)
(W) (_I)NF(N-— 2n +% ne) U-z_el-z VN—2ﬂ+nEj2 (Asa)
{Feynman-Chisholm representation)
or o
i "o dzg s
(Wéﬁ] Y [ram (A.5b)

(Schwinger-Nambu representation).

T
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Here & is the number of internal lines, # is the number of independent loops, 4—e
is the number of space-time dimensions and the integration domain is given by

M=

0]
-

=

dzg = dz;, Zg = Z;. A6
o=y [ & 6= g (A6)

/

!

Rule 5. Multiply (4.1) by factors associated with the remaining ¢lements of the
diagram G: '

(2) for each mass-shell quark line a factor \/Zz;

(b) for each mass-shell gluon line a factor\/Z5
(omit factors v/Z; and +/Z5 if constructing an unrenormalized amplitude);

(c) for each internal quark j line a factor i (9; + 1) times the numerator factor
of fig. 2; ,

(d) for each internal gluon or gluon auxillary line a factor —i times the numerator
factor of fig. 2;

(e) for each vertex a factor from fig. 1 or fig. 2;

(f) for each closed quark loop a factor —1;

(g) for each closed ghost loop a factor —1;

(h) the combinatoric factor associated with the diagram G. This arises from the
iteration of (2.2). Alternatively, it can be computed by the rules of Diagrammar {40];
(i) renormalize charge by g = (Z5/Z1) v/Z, go (skip this step if constructing an

unrenormalized amplitude).

Rule 6. Let us denote by JF the product of v*, DY, g and (B; +m) from vertices
and propagators, appropriate external quark spinor factors and gluon polarizations,
and combinatorial and loop factors. Then the action of IF on the integral (A.5)is -
defined by

Im)_ . I'en) s I'n - 1) s T(m — 2) .

F Vm FO Vm Fl Vmﬁl F2 Vm_2 (A?El)
(Feynman-Chisholm representation}),
Fe'V= |:F Ly +(i)21? + }e—”’ (A7B)
° T Tt ) TRl i

{Schwinger-Nambu representation),

where the subscript k& of Fy stands for the number of contractions. By contraction
we mean picking out a pair of DY, DY from JF, replacing them by g"”, putting a fac-
tor -1 By; in front and summing the result of this operation over all distinct pairs. -
Non-contracted D are then replaced by @#. Summations over Lorentz indices and
spinor traces have to be evaluated by the rules of dimensional regularization [28,30]
such as

gi=4—¢€,
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Yiyu=4—¢,

Yy, =(e—2a,

Vaby, =4a- b) — cha, :
Yeabey, = 2 ebd — cabe . a9 o

Rule 7. Let us denote by W, the group-theoretical weight of the diagram G, i.e.
the product of all —iCj and (T7)§ factors from vertices and &;; and 89 factors from
the internal lines. The only rules needed for general, symmetry-group-independent
considerations are the Lie algebra relations between coupling strengths. In the dia-
grammatic notion of ref. [24] they are

u - _K . :t (A.92)
>_< /X\ - I (A.9b)

A method for calculation of Wg for specific Lie algebras is given in ref. [24]. The
basic idea is that a fill description of QCD couplings algebra is given by enumera-
tion of the types of couplings between quarks. If nothing beyond colour conserva-
tion is assumed, the algebra is SU(n). For each additional type of coupling (quark-
antiquark, three quarks, etc.), an invariance relation reduces the number of indepen-
dent gluon colours, restricting the algebra to some sub-algebra of SU(n), The weight
Wg is a combinatoric number which counts the number of distinct colourings of
the diagram with the allowed quark and gluon colours (each colouring has the same
momentum space integral), and it can be computed from the invariance relations
without recourse to any explicit matrix representations for Gy and TH%.
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