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The pericdic orbit theory of classical and quantum mechanics of classically chaotic
dynamical systems has recently advanced on three fronts: The cycle expansion techniques
have made possible new numerical spectra evaluations; Riemann conjecture inspired
functional equations have been formulated; and new methods for reducing the numbers of
cycles required in cycle expansions have been proposed. However, control of the
convergence of classical periodic orbit formulas remains a difficult problem.

This issue of CHAOS focuses on the periodic orbit
theory of the classical and quantum mechanics of classi-
cally chaotic dynamical systems. The papers collected here
were presented in the NORDITA “Physics of Quantum
Chaos and Measurement” program, Copenhagen, April—
June 1991, and the NATO Advanced Research Workshop
“Quantum Chaos—Theory and Experiment,” Niels Bohr
Institute, 28 May-1 June, 1991. They represent very recent
advances on at least three fronts: new, cycle-expansion-
based numerical spectra evaluations; Riemann conjecture
inspired functional equations; and new proposals for reduc-
tion of the numbers of cycles required in cycle expansions.
Perhaps the prettiest new application presented here is D.
Wintgen, K. Richter, and G. Tanner’s cycle expansion
evaloation of the helium spectrum; this solves a long-stand-
ing problem of quantum mechanics, the very problem
which daunted the 1920s old quantum theory and led to
the birth of modern quantum mechanics.

The articles in this issue of CHAOS are interrelated to
an unusual degree, with some authors advocating bold new
conjectures, some providing supporting evidence, and still
others already attempting to shoot them down. This fairly
reflects the spirit of the workshop; the participants met just
as the periodic orbit theory became a straightforward com-
putational tool, with many new provocative numerical re-
sults challenging the theory, and, conversely, with new
theoretical speculations providing impetus for experimen-
tation, both genuine and numerical. The sense was one of
rapid progress, such as when surprisingly simple ideas turn

out to work much better than they should—but probably, -
in a larger perspective, the main contribution of the work

presented here will be that it helped clarify the real obsta-
cles that stand in the way of developing a serious theory of
chaotic systems.

The history of the periodic orbit theory is rich and
curious, and the present advances are, to an equal degree,
inspired by a century of separate development of three
disparate subjects. (1) classical chaotic dynamics, initiated
by Poincaré and put on its modern footing by Smale' and
Ruelle? (among many others); (2) quantum theory, initi-
ated by Bohr, with the ‘“chagtic” formulation by
Gutzwiller;** and (3) analytic number theory, initiated by
Riemann and formulated as a modern spectral problem by
Selberg.>® Following superficially totally different lines of
reasoning and driven by very different motivations, they all

CHAQS 2 (1), 1982

1054-1500/92/010001-04$001.00

arrive at formally nearly identical zeta functions or func-
tional determinants.’

That these topics should be related is far from obvious,
and this is reflected in the discomfort with which the ex-
perts'in each of the fields digest the results of their distant
colleagues. Connection between dynamics and number the-
ory arises from the observation that description of geodesic
motion and wave mechanics on spaces of constant negative
curvature is essentially a fiumber-theoretic problem. 4 pos-
teriori, one can say that zeta functions arise in both classi-
cal and quantum mechanics because, in both, the dynam-
ical evolution can be described by the action of linear
evolution (or transfer) operators on’infinite-dimensional
vector spaces. The spectra of these operators are given by
the zeros of appropriate determinants. One way to evaluate
determinants is to expand them in terms of traces, log det
= tr log, and, in this way, the spectrum of an evolution
operator becomes related to its traces, i.e., periodic orbits.
A perhaps deeper way of restating this is to observe that
the zeta functions perform the same service in all of the
above problems; they relate the spectrum of lengths (local
dynamics) to the spectrum of eigenvalues (global aver-
ages), and, for nonlinear geometries, they play a role anal-
ogous to that the Fourier transform plays for the circle.

I. VALIDITY OF THE SADDLE-POINT OR
SEMICLASSICAL APPROXIMATIONS

In classical mechanics and number theory, the zeta
functions are exact. The guantum-mechanical ones, de-
rived by the Gutzwiller approach, are, at best, only the
saddle-point approximations to the exact quantum func-
tional determinants, and for quantum mechanics an impor-
tant conceptual problem arises already at the level of der-
ivation of zeta functions: How accurate are they, and can
the periodic orbit theory be systematically improved? Until
recently, the eigenvalues calculated from the periodic orbit
theory were so inaccurate that there was not much point in
investigating corrections to them. The first detailed numer-
ical investigation of the correction terms is undertaken
here by A. Wirzba. He finds that for the open two- and
three-disk systems patching up the cycle expansions by
including creeping (or tunneling) periodic orbits fails to
bring cycle expansions significantly closer to the exact
quantum mechanics, and whether the theory can be im-
proved without abandoning periodic orbits remains to be
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seen. M. Saraceno and A. Voros investigate differences be-
tween the exact and the semiclassical quantum determi-
nants in a clean hyperbolic system and also encounter a
variety of puzzles.

IIl. CYCLE EXPANSIONS

In practice, all the papers presented here take the sad-
dlepoint approximation ito quantum mechanics (the
Gutzwiller trace formula, possibly improved by including
tunneling periodic trajectories, or with a Weyl staircase
prefactor) as the starting point. Once that is assumed,
what follows is classical in the sense that all quantities used
in periodic orbit calculations—actions, stabilities, geomet-
rical phases—are classical quantities. The problem is then
to understand and control the convergence of classical pe-
riodic orbit formulas.

While various periodic orbit formulas might be for-
mally equivalent, practice shows that some are vastly pref-
erable to others. Today, three classes of periodic-orbit for-
mulas are in use:

(1) Troce formulas: In classical dynamics, trace for-
mulas hide under a variety of ungracious appellations such
as the f~alpha or multifractal formalism; in quantum me-
chanics, they are known as the Gutzwiller trace formulas.
In actual calculations they are hard to use for anything
other than the leading eigenvalue estimates.

(2) Ruelle or dynamical zeta functions® are typically of
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where the product is over all prime cycles p, A, is the
expanding p-cycle stability eigenvalue, and T, is the p-cycle
period. (1) also yields semiclassical guantum resonances, if
t, is the quantum amplitude associated with a given cycle,

t,= (1/ HAD)e(i/h)Sp(s) + i';rmp,

where S, is the action and m,, is the Maslov index of the p
cycle, Combined with cycle expansions, dynamical zeta
functions are a powerful tool for determination of classical
and quantum mechanical averages.

(3) Selberg-type zeta functions, Fredholm determi-
nants, or functional determinants are the natural objects for
spectrum calculations, with convergence better than for
dynamical zeta functions, but with extra products over (1)
type factors, and messier cycle expansions. A typical Sel-

berg-type zeta function is of the form
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Most periodic orbit calculations presented employ cycle
expansions of such determinants.

Loosely speaking, a cycle expansion’ is a series repre-
sentation of a zeta function, with products in (1} and (2)
expanded as sums over pseudocycles, products of £’s. The
product, as it stands, is really only a shorthand notation for
a zeta function—for example, the zeros of the individual
factors are not the zeros of the zeta function, and conver-
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gence of such objects is far from obvious, In the crudest
application of a cycle expansion, the practitioner simply
throws in all cycles available, and extracts eigenvalues.
Surprisingly, it seems that any method, no matter how
cockeyed, produces a spectrum of not unreasonable accu-
racy. This is illustrated here by the numerical results of M.
Sieber, G. Tanner and D. Wintgen, F. Christiansen and P.
Cvitanovié and P. Dahlqvist; popular models are the an-
isotropic Kepler problem, the x*y* potential, and the hy-

perbola billiard (billiard whose walls are given by xy

= const). We note with pleasure that even patently wrong
formulas work up to a point: M. Sieber simply truncates
the Selberg product (2) (thus all zeros of the zeta function
are in wrong places)—still, by taking the real part, he
obtains decent estimates for the low eigenvalues. While M.
Sieber’s and G. Tanner’s calculations seem to support this
claim, F. Christiansen finds that such truncations lead to
uncontrollable numbers of spurious eigenvalues.

A more serious theory of cycle expansions requires a
deeper understanding of their analyticity and convergence.
While the classical, the quantum, and the number-theoret-
ical zeta functions are formally very similar, the intuition
that they give us about their convergence is very different.
The real life chalienges are generic dynamical flows, which
fit neither schematization. At this time, the two inspiring
idealizations and main sources of intuition are the Rie-
mann zeta function, and the classical “axiom A” hyper-
bolic systems.

iil. CONVERGENCE OF CYCLE EXPANSIONS:
“AXIOM A” HYPERBOLIC FLOWS

The main conceptual insight of Smale! is that, if a flow
has a topology of a (Smale) horseshoe, the associated zeta
functions have nice analytic structure. In a more formal
setting, such flows are called “axiom A,” and Ruelle?
proves that the associated zeta functions are holomorphic
and the spectrum is discrete. This situation is very different
from what practitioners of guantum chaos are used to:
There is no “abscissa of abysmal convergence” and no “en-
tropy wall,” the exponential proliferation of cycles causes
no problem, the Selberg-type zeta functions are entire and
converge everywhere, and the topology dictates the choice
of cycles to be used in cycle expansion truncations. The
basic observation”® is that the motion in dynamical sys-
tems of few degrees of freedom is in this case organized

around a few fundamental cveles, More nrecisely, the cvcle
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expansion of the product (1)
1
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4
allows a regrouping of terms into dominant fundamental
contributions f, and decreasing curvature corrections c,.
The fundamental cycles #, have no shorter approximants;
they are the “building blocks™ of the dynamics in the sense
that all longer orbits can be approximately pieced together
from them. A typical curvature term in (3) is a difference
of a long cycle {@b} minus its shadowing approximation by
shorter cycles {¢} and {b}:
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The orbits that follow the same symbolic dynamics, such as
{ab} and a “pseudoorbit” {a}{b}, lie close to each other,
have similar weights, and for longer and longer orbits the
curvature corrections are expected to fall off rapidly. In-
deed, for systems that satisfy the “axiom A” requirements,
such as the open disk billiards, curvature expansions con-
verge very well.’ D, Wintgen K. Richter, and G. Tanner
VEery buu,t:bbluuy a.pply the curvature capaumuua o helium.
An original application of the same technigue in 2 classical
context is given by R. Mainieri.

Most systems of interest are not of the “axiom A”
category; they are neither purely hyperbolic nor do they
have a simple symbolic dynamics grammar. The impor-
tance of symbolic dynamics is grossly unappreciated by
people who come from exclusively quantum chaos back-
grounds; the crucial ingredient for nice analyticity proper-
ties of zeta functions is the existence of a finite grammar
(coupled with uniform hyperbolicity). From the hyper-
bolic dynamics point of view, the Riemann zeta function is
perhaps the worst possible example; understanding the
symbolic dynamics would amount to being able to give a
finite grammar definition of all primes. Hyperbolic dynam-
ics suggests that a generic “chaotic” dynamical system
should be approached by a sequence of finite grammar
approximations,® pretty much as a “generic” number is
approached by a sequence of continued fractions. This sys-
tematic pruning of forbidden orbits requires care and is
carried out in only one of the papers; K. T. Hansen ex-
plores it in detail for the case of hyperbola billiards. The
unhealthy effects of uncontrolled grammar are illustrated
by the results of P. Cvitanovi¢, P. Gaspard, and T.
Schreiber in the context of classical deterministic diffusion.

Strictly speaking, the proofs of discreteness of the clas-
sical spectra have, so far, not been extended to the semi-
classical zeta functions. The technical problem is that the
proofs require a transfer operator that is multiplicative
along the trajectory; composition of quantum evolution op-
erators is not of that type, as the composition requires a
further saddle point expansion. However, on the basis of
heuristic arguments that work for the classical case and the
numerical experience with quantum resonances for repel-
lers, we expect the spectra to be discrete also for the *“ax
jom A” semiclassical zeta functions.

IV. CURE FOR EXPONENTIAL PROLIFERATION?

While the exponential proliferation of cycles does not
necessarily worsen the convergence of zeta functions (at
least it does not for the cases discussed above), it does
present a practical problem—so far, exponential increase in
number of cycles is required for a linear increase in number

of eigenvalues evaluated. This is unsatisfactory, and E.
Bogomolny argues that a small subset of cvcles shonid
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suffice for good estimates of eigenvalues up to a given cut-
off energy, While G. Tanner’s calculations seem to support
the claim, F. Christiansen’s investigation of how nonuni-

formly the phase space is covered casts serious doubts on
it. Even so, the idea is so appealing that it is worth much
more trashing,

V. CONVERGENCE OF CYCLE EXPANSIONS:
FUNCTIONAL EQUATIONS

‘While the Riemann and the Selberg zetas might seem
remote from physics problems, there is one fact that cannot
be - ignored: Mathematicians have_developed methods for
evaluating spectra in these problems that are tens of orders
of magnitude more effective than what physicists use in
calculating quantum spectra, and there is a great tempta-
tion to extend this mathematics to the dynamics that we
study. Generally, the problem with such Riemann-zeta in-
spired approaches is that almost any magic property that
underlies this mathematics fails for realistic dynamical zeta
functions; all derivations seem to depend very explicitly on
underiying integer lattices, their self-duality under Fourier

transforms, etc.

A very appealing proposal’’! along these lines is dis-
cussed in this issue by J. Keating, E. Bogomolny, and M.
Sieber. The idea is to improve the periodic orbit expansions
by imposing unitarity as a functional equation ansatz. The
cycle expansions used are the same as the original ones,>1?
but the philosophy is guite different; the claim is that the
optimal estimate for low eigenvalues of classically chaotic
quantum systems is obtained by taking the real part of the
cycle expansion of the semiclassical zeta function, cut at
the appropriate cycle length (Berry and Keating''). M.
Sieber, G. Tanner, and D. Wintgen, and P. Dahlqgvist find
that their numerical results support this claim; F. Chris-
tiansen and P. Cvitanovi¢ do not find any evidence in their
numerical results. The usual Riemann—Siegel formulas ex-
ploit the self-duality of the Riemann and other zeta func-
tions, but there is no evidence of such symmetry for generic
Hamiltonian flows. Also, from the point of hyperbolic dy-
namics discussed above, the proposal in its current form
belongs to the category of crude cycle expansions; the cy-
cles are cut off by a single external criterion, such as the
maximal cycle time, with no regard for the topology and
curvature corrections, While the functional equation con-
jecture is not yet in its final form, it is very intriguning and
worth pursuing.

The dynamical systems that we are really interested
in—for example, smooth, bounded, Hamiltonian
potentials—are presumably never really chaotic,™'* and it
is still unclear what intuition is more rewarding: Are guan-
tum spectra of chaotic dynamics in smooth, bounded,
Hamiltonian potentials more like zeros of Riemann zetas
or zeros of dynamical zetas? We do not know at present,
and the central question remains: how to attack the prob-
lem in a systematic and controllable fashion?

While the work collected in this issue of CHAOS is
provocative, a serious improvement of the convergence of -
periodic orbit formulas still eludes us and seems to require
a new idea. We are left with a series of open challenges,
such as the following.

(1) Symbolic dynamics: Develop optimal sequences
{“continued fraction approximants”) of finite subshift ap-
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proximations to generic dynamical systems. Apply to a
periodic orbit evaluation of a spectrum for (a) a billiard
and (b) a physically motivated Hamiltonian flow.

(2) Exponential proliferation: Resolve » spectral ei-
genvalues using as input a number of cycles that grow
more slowly than exponentially with ».

(3) Nonhyperbolicity: Incorporate power-law correc-
tions (marginal stability orbits, “intermittency™)} into cycle
expansions. Apply to long-time tails in a Hamiltonian
problem such as the x%y* potential, deterministic diffusion
in the Lorentz gas, etc.

(4)Tunneling: Add complex time orbits to quantum
mechanical cycle expansions (the WKB theory for chaotic
systems).

(5) Unitarity: Evaluate corrections to the Gutzwiller
semiclassical periodic orbit sums, or reformulate the peri-
odic orbit theory in such a way that unitarity is built in,
and the zeros (energy eigenvalues)of the appropriate Sel-
berg products are real.

(6) Symmetries: Include spin, fermions, gauge fields
into the periodic orbit theory.
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