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We argue that extraction of unstable cycles and their eigenvalues is not only experimentally feasible,
but is also a theoretically optimal measurément of the invariant properties of a dynamical system.

PACS numbers: 05.45.+b

‘The same dynamical system can be presented to us in
many guises: as a phase-space trajectory, as a time-
delay plot, and as a Poincaré section.! With data
presented in such form it is not always easy to determine
whether the theory and the experiment (or different ex-
periments) indeed refer to the same system. Clearly, the
question of invariant characterization is of paramount
importance for the theory of dynamical systems. Here
we shall argue that for the deterministic dynamical sys-
tems of low intrinsic dimension, the cycles (periodic or-
bits) provide a detailed invariant characterization, whose
virtues are the following: (1) Cycle symbol sequences
are topological invariants—they give the spatial layout
of a strange set. (2) Cycle eigenvalues are metric
invariants—they give the scale of each piece of a strange
set. (3) Cycles are ordered kierarchically—short cycles
give good approximations to a strange set and the errors
due to neglect of long cycles can be bounded. (4) Cycles
are robust— eigenvalues of short cycles vary slowly with
smooth parameter changes. (5) Short cycles can be ac-
curately extracted from the experimental data.

The cycles were introduced into the theory of the
dynamical systems by Poincaré? and have played a cen-
tral role in the mathematical work on the subject ever
since.>* What is new here is the realization that with
the recent advances in the techniques of experimental
data analysis,>® and a deeper theoretical understanding
of dynamically generated strange sets,”® the cycles are
now not only experimentally accessible, but they indeed
appear to be the optimal practical tool for the description
of strange sets. The new experimental ingredient is point

(5): Future investigations of experimental strange sets
will use deterministic noise-smoothening techniques®
~—with those, the cycles are available at little extra
effort. The new theoretical ingredient is point (3): We
now know how to control the errors due to neglect of
longer cycles.

An important virtue of cycles is their robustness [point
(4)]: regardless whether a time series is a long transient,
a long cycle, or truly ergodic, the eigenvalues of short cy-
cles are stable and equally easy to extract. For example,
under a change of the parameter a of the Hénon map'®.
(6=0.3 fixed) from 1.4 to 1.39945219, the asymptotic
attractor undergoes a dramatic change but the eigenval-
ues of short unstable cycles vary gently.

When and if the cycles suffice for the complete charac-
terization (and reconstruction) of a dynamical system is
not clear, but they do go further toward detailed low-
dimensional modeling of transitions to turbulence than
the dimensions, and we hope that in the future the data
will be presented in terms of cycles rather than the
“thermodynamic” averages. ‘ :

That the cycle topology and eigenvalues are invariant
properties of dynamical systems follows from elementary
considerations. If the same dynamics is given by a map
f in one set of coordinates, and a map g in the next, then
f and g (or any other good representation) are related by
a reparametrization and a coordinate transformation
f=h " logoh. Asboth fand g are arbitrary representa-
tions of the dynamical system, the explicit form of  is of
no interest, only the properties invariant under any trans-
formation & are of general importance. The most obvi-
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ous invariant properties are topological; a fixed point
must be a fixed point in any representation; a trajectory
which exactly returns to the initial point (a cycle) must
do so in any representation. Furthermore, a good repre-
sentation should not mutilate the data; 2 must be a
smooth transformation which maps nearby cycle points
of f into nearby cycle points of g. This smoothness
guarantees that the cycles are not only topological in-
variants, but that their linearized neighborhoods are also
metrically invariant: As is well known, the eigenvalues
of the Jacobians df®(x;)/dx of periodic orbits
f )(x; ) =x; are invariant. What is perhaps not widely
appreciated is the fact that with the modern data ac-
quisition techniques, the cycle eigenvalues are measur-
able with accuracy. Though these methods have by now
been successfully applied to a variety of nontrivial
higher-dimensional strange sets,>%!! the simplest of
strange attractors suffices to illustrate the essential ideas.

Consider a unimodal 1D map which sends the critical
point x, into the unstable fixed point xq, Fig. 1(a). At
the nth level of coarse graining, a “neighborhood” i con-
sists of all points x which follow the itineary i
=ce263 "+ * €, With & =0 if f®(x) <x,, and e =1 if
¥i ®)(x) > x,. n iterations of this map thus resolves the
strange attractor in 2" distinct neighborhoods. Con-
versely, given a time series xg,x1,x2,...,Xx =f (")(xo),
we aim at reconstructing the dynamical system by parti-
tioning the data into such neighborhoods.

In the first step of such reconstruction, all returns

after one iteration are used to locate the fixed points;

fitting, inter alia, yields their eigenvalues. We include
into the neighborhood of a fixed (or periodic) point all
close-by points whose Jacobian is qualitatively similar
(for example, flips or does not flip along the unstable
eigendirection). The reconstruction now proceeds by
partitioning the second iterates into those that remain
close to the fixed points, and those that jump from the
neighborhood of one periodic point to the neighborhood
of another periodic point [intervals 01 and 10 in Fig.
1(a)]. The two-cycles and their eigenvalues are obtained
by our fitting returns after two iterations, then the third
iterates are partitioned, and so forth. The reconstruction
stops when the density of points becomes insufficient to
fit a neighborhood,!? and we are left with a finite list of
cycle itineraries i together with their eigenvalues A;.

Here we are not concerned so much with how the cy-
cles are to be extracted (the requisite numerical methods
are available in the literature>®), but why they should be
extracted. The central problem here is our ability to
control the errors arising from approximating the dy-
namics by a finite number of short cycles. As the error
estimates depend on the particular quantity that is being
computed, we shall illustrate the general method by a
simple example, a computation of the escape rate from a
one-dimensional repeller.

Consider a unimodal map like the one of Fig. 1(a), but

2730

(a)

ST AT

o0 ot 1L 1o
001 o1t olo 110 111 101 100

FIG. 1. A “skew Ulam” map f(x)=cx(1—x)(1—bx),
1/e=x.(1 —x)(1 —bx.), is a simple example of a strange at-
tractor. Here b==0.6. (a) Indicated are the partitionings of
the attractor into four neighborhoods on the second level, the
eight neighborhoods on the third level, the fixed points 0 and 1,
the two-cycle 01, and the three-cycles 001 and 011. (b) The
polygonal approximation to the attractor in terms of two-cycles
(dotted segments) and three-cycles (full segments). A neigh-
borhood (here the interval /101) expands at a rate well approxi-
mated by the cycle eigenvalue There df @ (x101)/dx)].

with f(x.) > 1. In such a map an interval around x. es-
capes in the first iteration, its two preimages escape in
two iterations, and so on. Let /; be the length of the
interval of all points which follow the itineary i
= €1 €263 * * - €, Without escaping in n steps. The measure
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of initial x which survive » iterations is given by

(n)
e—n/T"EZIi. (1)

1

The mean lifetime of a random initial x is given by

T=lim,— «»T,. Each interval /; contains a periodic
point x;, and the expansion of /; onto the unit interval in
n iterations is well approximated the stability of x;: J;
=a;/|A;|. For large n the prefactors a;=O(1) are
overwhelmed by the exponential §rowth of A; and can be
neglected. Intuitively, as e " ?*— e ~™T, the formal
sum over all orbits of all lengths

0 (r) oo
Z@ =2 "X | A T =2, X G| A )T ()
n=1 i p r=1
should diverge for z =¢ T, Furthermore, this sum, un-
like (1), is both asymptotic (evaluated in the n— oo lim-
it) and f— k "lofoh invariant, as it depends only on
the cycle eigenvalues. The second equality comes from
the observation that if the trajectory retraces itself r
times, its stability is Aj, where is p is the primitive cycle
(single traversal of the orbit), and that each primitive
cycle of length n, contributes n, terms to the above sum.
The sum (2) is a logarithmic derivative Z(z) =¢ 'z d¢/
dz of the dynamical ¢ function'?

1/¢=I10-1¢,). 3)
p

The product is over all primitive cycles p (nonrepeat-
ing symbol strings): for example, p=011=101=110

|

1/¢(z,q) =1 —to—t1— (tro—t120) — (t100 —210t0) — (2101 — £10¢1) — (t1001 — L1001 — 10120+ L10tot ) — -+ - .

A fit to a dynamical system f(x) in terms of finite cycles
and their eigenvalues is a polygonal fit [see Fig. 1(b)]. It
provides estimates for eigenvalues of all longer cycles.
For example, a four-segment fit in Fig. 1(b) expresses
the eigenvalue of the 001 cycle, Agor =/ (x001)
X f'(x010)f (x100), in terms of shorter cycles:
Ago1 = AgAg1. More generally, the quantity such as
foo1 —Zoto: is a measure of the quality of the fit of a
dynamical system by a finite polygonalization. For a
finite polygonal approximation to the system, such as
Fig. 1(b), the cycle expansion (5) is a finite polynomial;
it generates the set in the same sense in which the origi-
nal Cantor rule (remove 3 of each interval) generates
the Cantor set (for the simplest of fractals 1/{=1
—to—1t1, to=t1=3%2"9). For smooth dynamics, such
deviations of n-cycle eigenvalues from their estimates in
terms of (n—1)-cycles are intuitively expected to be of
order N ~2, where N is the number of polygon sections
(distinct cycle points of length #). Thus the smoothness
of a dynamical flow implies that the errors due to neglect
of long cycles in cycle expansions such as (5) should fall
off exponentially fast with the cutoff cycle length.

For the “skew Ulam” example of Fig. 1, this works

=...011011... is primitive, but 0101 =010101...=01
is not. In the present example ¢, =|A,| ~!z"; however,
the technique is by no means restricted to escape rates,
and it is a simple exercise to repeat the above derivation
for a class of “thermodynamical” averages used in the
extraction of generalized dimensions,*!* with (1) re-
placed by

(n)
1=2.pf/If . 4)
1

In this case t,, the weight associated with the cycle p
in (3), is given by #, =e"**" "?? where yp, =In| A, | is the
stability exponent, and v, is proportional to the cycle
length n,. For example, the cycles are counted by our
setting v=0 and v,q =nyh: & is the topological entropy.
For a t value such that g(z) =0, (4) is the classical
definition of the Hausdorff-Besicovitch dimension Dy
= —1z, and so on. The stability A; need not refer to
motion in the dynamical space; in more general settings
it can be the renormalization scaling function'? of trajec-
tory splitting, or even a scaling function describing a
strange set in the parameter space.”'¢ In the escape rate
computations, the cycle “probability” p; might depend
on the particular cycle; or p; might have altogether
different interpretations. !*!7

How are formulas such as (3) used? Once a set of the
shortest cycles has been extracted, the g =q(z) function
can be evaluated by substituting the available cycle ei-
genvalues into (3) and determining the zeros of 1/¢. For
example, if the strange set is labeled by binary symbol
sequences, as in Fig. 1, the cycle expansion is given by

(5)

very well; a few cycles suffice to estimate the Hausdorff
dimension to many digits.!! However, as this is an ex-
ceptionally well behaved model, we have tested the tech-
nique on a variety of generic strange sets which differ
from it in two essential aspects: (1) the topology of such
sets is highly irregular, as many symbol sequences are
pruned (there are no physical cycles corresponding to
such sequences); (2) the sets are nonrhyperbolic, i.e.,
generically, one expects a mixture of sinks and repelling
orbits with large variations in the expansion rates.

For the Hénon-type maps we solve the pruning prob-
lem?® by approximating the physical set by a sequence of
regular self-similar Cantor sets. For each such regular
Cantor set, a minimal set of cycles suffices to account
correctly for the topology of the set. Cycles longer than
the minimal set contribute exponentially small re-
finements. Applied to the Hénon-type maps, the cycle
expansions exhibit rather impressive improvement of con-
vergence!! relative to the standard methods such as those
of Refs. 8 and 14. For example, for a=1.81258,
b=0.0228 64 Henon repeller introduced in Ref. 8, the
eigenvalues of only fourteen unstable cycles of lengths
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up to seven yield the transverse partial dimension D;
=0.1205. . . with 0.5% accuracy.

The nonhyperbolicity does not, per se, prevent the
averaging, but the intuitive expectation that the smooth-
ness of the dynamical system implies exponential falloff
of the long cycle contributions has to be checked case by
case; in certain cases, such as at the phase transitions'’
(eigenvalue crossovers, A;— 1 marginal scaling situa-
tions), the above arguments about exponential conver-
gence fail, and the contributions of long cycles must be
carefulily controlled.

We have used the thermodynamic averages here only
as an illustration of the quality of the finite cycle approx-
imations to dynamical systems. Qur main point is that
the theory and experiment now can and should be com-
pared cycle by cycle. The cycle eigenvalues are not only
available from the experimental data, but in the future
they should be extracted; both from the experimental
and the theoretical point of view a list of the cycle
itineraries, the cycle eigenvalues, and the densities of
points used in the fitting of each cycle measured in an
experiment is possibly the optimal invariant description
of the topology and the scale structure of a given dynam-
ical system.
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