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Semiclassical quantization with bifurcating orbits
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Bifurcations of classical orbits introduce divergences into semiclassical spectra which have to be smoothed
with the help of uniform approximations. We develop a technique to extract individual energy levels from
semiclassical spectra involving uniform approximations. As a prototype example, the method is shown to yield
excellent results for photoabsorption spectra for the hydrogen atom in an electric field in a spectral range where
the abundance of bifurcations would render the standard closed-orbit formula without uniform approximations
useless. Our method immediately applies to semiclassical trace formulas as well as the closed-orbit theory and
offers a general technique for the semiclassical quantization of arbitrary systems.
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The correspondence between atomic spectra and classical In this paper both ideas are combined, i.e., we use both
orbits has been of fundamental interest and importance sinagniform approximations and harmonic inversion techniques
the early days of quantum mechanics. The “old” quantumfor the semiclassical calculation of high-resolution spectra.
theory suffered from the severe drawbacks that the Bohrin the presence of uniform approximations, the classical scal-
Sommerfeld quantization rules can only be applied to inteing laws that have been essential to all previous applications
grable systems, and, for atomic systems, the Heisenbeif the harmonic inversion techniqii8] are no longer valid.
principle for matrix elements is silent about transition ampli- Therefore, the harmonic inversion method must be general-
tudes between low-lying and highly excited states. An imporized to handle the nonscaling functional form of uniform
tant step towards a deeper understanding of the intimate coBemiclassical approximations. It then gains a degree of flex-
nection between classical orbits and the quantum spectra wasility in the quantization of arbitrary systems, which no
achieved by the development of the periodic orbit thddfly  other semiclassical quantization scheme has been able to
and, as a variant for the photoexcitation of atomic systemseach to date.
closed orbit theor3[2,3_]. In these theor_ies, the density of e proposed method will be demonstrated by way of an
states or photoabsorption spectra are given as the sum of W o mpje of the hydrogen atom in an electric field. As is well
terms, one a smoothly varying pdes a function of energy  nown the classical dynamics of this system is integrable,

and the qther a su.perposition of sinusoidal modulatiops. Thﬁ/hich means that semiclassical energy eigenvalues can be
frequencies, amplitudes, and phases of the modulations ar

. . . . > Alculated with the help of the Einstein-Brillouin-Keller
directly given in terms of classical parameters of the Orb'ts'torus uantization rulefl1,17. However, when the closed-
The closed-orbit theory has proven a powerful tool for the ~ — q : . . C o

Qrblt theory is applied, the hydrogen atom in an electric field

semiclassical interpretation of quantum spectra of, e.g., al hibi ' ical of mixed lar-chaoti
oms in external magnetic and electric fields by explaining theXNPIts properties typical of mixed regular-chaotic systems

peaks in the Fourier-transform recurrence spectra—2S: €. Rydberg atoms in a magnetic field onéteHeiles-
qualitatively and even quantitatively—in terms of the closed®YP€ Systems. In particular, the closed orbits starting at and
orbits of the underlying classical systeii—6]. However, retqrnlng to the nucleus undergo blfurc_atlons as the energy is
more than a decade after the development of the closed-orpigried. Contrary to the torus quantization, the method intro-
theory, the inverse procedure, i.e., the semiclassical calculgluced in this paper is not restricted to the Stark effect, but
tion of the eigenenergies and transition amplitudes of indican be applied to a large variety of systems with chaotic or
vidual states is still an unsolved problem. The reasons argnixed regular-chaotic classical dynamics. Furthermore, it
twofold: First, both the closed-orbit and periodic-orbit theo-can be used in connection with the periodic-orbit theldrly
ries suffer from fundamental convergence problems of thes well as the closed-orbit theory.

infinite orbit sums. Second, in generic systems the orbits The classical dynamics of the Stark system has already
undergo bifurcations when the energy is varied, and thdeen discussed in detdill]. For any energy, the electron
semiclassical theories for isolated orbits exhibit unphysicatan go “uphill” against the direction of the electric field until
divergences at the bifurcation points. Both problems havéhe external field and the Coulomb field make it return to the
been addressed separately: First, the harmonic inversiomucleus. Alternatively, the electron can leave the nucleus in
technique was introduced as a method for semiclassicdahe “downhill” direction of the external field. The downbhill
guantization[7,8], which allows one to overcome the con- orbit is closed only for energies below the Stark saddle-point
vergence problems of the closed orbit sum and to extractnergy,Es= —2F2 otherwise the electron will cross the
high-resolution spectra from a finite set of classical orbits.Stark saddle and escape to infinity. In addition to these axial
Second, in the vicinity of bifurcations, the semiclassical ap-closed orbits, there are nonaxial orbits returning to the
proximation for isolated orbits was replaced with a uniformnucleus aftetk oscillations in the downhill direction and
approximation describing all orbits involved in a bifurcation >k oscillations in the uphill direction. Each of these orbits is
collectively[9,10]. generated in a bifurcation off the downhill orbit at a critical
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energyE 4., and destroyed in a collision with the uphill orbit Wherel is given in terms of the standard Fresnel integrals
at Egest>Egen. Outside this energy range, they exist asC(x) and$(x) [15],
“ghost” orbits in the analytic continuation of the real phase

space to complex humbers. o LI —a .| —a

_ _ . |l=g @M ——C| —=|-iS| — 4

The closed-orbit theory associates modulations observed 2 ’
. - : N2 NP3
in the quantum photoabsorption spectra of Rydberg atoms in
external fields with the classical closed orbits. The quantunand
response function
|< D |2 a=*2Sg— Spon ()
i|D|n) ) )
9(E)=> E—E +ie =(i|DG¢Dli), (1)  The negative sign foa has to be chosen if the nonaxial orbit
n n

is a complex ghost orbit.

L L . . . The high-resolution quantization by harmonic inversion
whereli) is the initial stateD is the dipole operator, af@: 17 g] is based on the observation that by equating the quan-
is the retarded Green's function, is given as a smooth backym recurrence functiofil) to its semiclassical approxima-
ground plus an oscillatory closed-orbit sy3,13 tion (2)—the smooth part can be neglected—and taking the
Fourier transform, we obtain

g°(E) =2 A fE)e'Scd®), 2) _
e —i> dye Ent=C(t) (6)

where S, is the action of a closed orbico) and A, a

recurrence amplitude calculated from the monodromy matriwvith d,= [(i|D|n})|? and

of the orbit and its initial and final directions with respect to 1

the electric field. It includes a complex phase given by the _ [ iScolE) @—iEt

Maslov index. In the following, we are using atomic uzits, cv= wa_de% Ao B)eSedDe 1=, 0

with =1 andF,=5.14x 10° V/cm being the unit of the

electric field strength. The quantization problem has thus been recast as the prob-
The most convincing semiclassical interpretation of quaniem of extracting the frequenci&s, and amplitudesl,, from

tum spectra can be obtained by means of “scaled energg given time signaC(t) of the form(6), provided the signal

spectroscopy:” By rescaling the classical quantities with suit7) can be calculated. In the case of a scaling system, the

able powers of, e.g., the electric field strenBthihe classical signal is given as a sum & functions.

dynamics can be shown not to depend on the enErgynd While the uniform approximation(3) successfully

the field strengthF separately, but only on the scaled energysmoothes the divergences in E®), it spoils the classical

E=EF Y2 when recording quantum states at a fixed scalegcaling propertieg14]. Therefore, the Fourier transform of a

energy~E as a function of the scaling parameter=F ~ 4, spect.rum including un|.form approximations cal_wnot be evalu-

each isolated closed orbit contributes a sinusoidal modula"’-‘tEd in terms 0P functions. In fact, for nonscalmg'systems,

tion to the sum(2), which can be extracted by a Fourier there seems to be no way at all to Comput_e the mte(c_j'l_)al

transform of the quantum spectrum. Experimental scaled erPECause. apart from the fact that the classical quantities can

ergy spectra of atoms in electric fields have been analyzed iﬁlways be c_alculated in a finite-energy interval only, the in-

this way [5,6]. The analysis reveals strong evidence fortegral can, in general, not even be expectgd to converge.

closed-orbit bifurcations. Therefore, neither by analytical nor by numer!cal means will
The simple semiclassical approximation embodied in théN€ be "?‘b'e to compute a useful s_emlc_IaSS|_caI S|g_nal fr(_)m

closed-orbit formuld?2) fails close to a bifurcation of closed (7). The |_nch5|or_1 of uniform app_rommanons In s_emlcla55|-

orbits, resulting in the divergence of the recurrence amplical duantization is thus a nontrivial and challenging task.

tudes. To overcome this difficulty, the closed-orbit terms for, To solve the problem,. we resort to the.observauon ”.‘ade

isolated orbits in Eq(2) must be replaced with a uniform " Ref. [16] that a ba.nd-hmltec_i §|gnal, which only contains

approximation describing all orbits involved in a bifurcation t_he_: spectral |r_1format|0n describing the quantum system in a

collectively. A uniform approximation suitable for regulariz- iNit€-energy interval Ein,Ema,d, can be obtained by re-

ing the bifurcation of a nonaxial orbit off either the downhill stricting th_e energy integral in Eq7) to this window. The

or the uphill orbit was derived by Gao and De[d®] as well ~ '€sulting signal

as Shaw and Robichea(i4]. We will use a slightly modi-

Emax .
ﬁed version qf their result t_hat giv_es the_cplle(_:tive_z cont_ribu- cPl(t)= if g°{E)e EldE, (8)
tion of the axial and nonaxial orbits participating in a bifur- 27 JE i
cation in terms of their actionS,, and S,,,, and recurrence o , ) ,
amplitudesA,, and A, as where g°*{E) is in general a nonscaling function that in-

cludes both contributions of isolated closed orbits and uni-

1 14] form approximations, can be evaluated numerically by stan-
W(E)=| 2| + 2| adgt _IAnon eiSax (3) dard methods. As it contains only a small number of
(1+i) a N2 frequencies in the interval chosen, it can be processed in a
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FIG. 1. Low-resolution semiclassical photoabsorption spectrum FIG. 2. High-resolution SemiCIQSSiC@pper partand quantum
for the hydrogen atom in an electric fiehd=51.4 V/cm with initial (lower part, invertel photoabsorption spectrum for the hydrogen

state|1s0) and light polarized along the electric field axis. The a_ltom In an electric f'ekf:51'4_ V/_cm W't_h initial statdl_s,o) gnd
truncation time isT, = 15x 1CF. light polarized along the electric field axis. The truncation time for

the semiclassical spectrum T, = 40x 10°.

numerically stable way by conventional high-resolution
methods such as linear prediction or Paajgproximants. the lower-energy range shown in Figal, individual non-
Contrary to previous methods for scaling systems, all ofpverlappingn manifolds can be observe@ie haven= 30 at
which contained the analytic evaluation of an integral, thee~ —5.56x1074.) In this region, the signal is sufficiently
numerical integration imposes no restrictions on the semitong to resolve individual spectral lines, although their pre-
classical response function occurring in the integrand. Noticgjse determination from the plots remains difficult. In the
that our method cannot be applied in connection with thEhigher-energy range shown in F|g(b1’ two, three, or even
original filter diagonalization algorithni8]. It is only the  four differentn manifolds overlap, leading to a drastically
separation between a low-resolution frequency filtering staggcreased spectral density. In this region the semiclassical
and a high-resolution harmonic inversion stage introduced igjgnal is evidently too short to discriminate individual lines.
Ref. [16] that allows for the present generalization to arbi-|t js important to note that the possibility of computing the
trary nonscaling semiclassical signals. low-resolution spectrum depends critically on the use of uni-
To demonstrate our method we investigate Stark spectrfyrm approximations. If it was calculated from isolated-orbit
of the hydrogen atom for transitions from the ground stateontributions only, a dense sequence of bifurcation-induced
|1s0) to highly excited Rydberg states with light polarized divergences would cover even the large-scale structure of the
parallel to the electric-field axis. The external field strength isspectra. With the low-resolution semiclassical spectgig.
F=10"% a.u=51.4 V/cm. The high-resolution Stark spec- 1) at hand, the band-limited time sign@) is now obtained
trum is obtained in two steps. by a numerical Fourier transform gf*{E). In that calcu-
First, a low-resolution semiclassical spectrum is obtainedation we used the signal lengffy,,,=40x 10° in order to
by truncating the closed-orbit suf?) at a maximal period resolve individual levels in the region of overlappingnani-
Tmax- The cutoff value for the periods should not be choserfolds.
smaller than the signal length of the band-limited sigi&l In the second step, the high-resolution semiclassical spec-
used for the harmonic inversion in the second step of thérum is finally obtained by harmonic inversion of the band-
procedure. The low-resolution spectrum calculated with dimited time signal(8). In Fig. 2 the semiclassical spectrum
truncation time ofT .= 15X 10° is presented in Fig. 1. In is compared to the exact quantum spectrum. The overall
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agreement between the semiclassical and the quantum spexte. It must then be replaced with a uniform approximation
trum is excellent, although for a few levels the comparisondescribing several bifurcations collectively. The uniformiza-
reveals discrepancies between the semiclassical and thien of an infinite bifurcation cascade, in particular, remains
quantum matrix elements. Note, in particular, the region ofan open problem whose solution is required to semiclassi-
high spectral density &~3.2x10"“. In this region, groups cally cross the saddle-point energy.
of three nearly degenerate levels exist, some of which are In summary, we have extended the harmonic inversion
well resolved semiclassically. AE~—4.4x10"4, even approach to semiclassical quantization to the quantization of
closer lines exist—they can hardly be discerned in the quarsystems without a scaling property. The generalized method
tum spectrum. These lines are not resolved semiclassicallgllows for the inclusion of uniform approximations into the
Instead, the harmonic inversion yields single lines with am-quantization procedure. We have demonstrated the effective-
plitudes equal to the sum of the two quantum amplitudes. Waess of our method by calculating a high-quality semiclassi-
are confident to fully resolve even these states in the semgal spectrum for the hydrogen atom in an electric field in a
classical spectrum when applying the cross-correlation techspectral region where the semiclassical approximation with-
nique for harmonic inversiof8]. out uniform approximations would be completely useless
In the future it should also be possible to extend the semidue to the abundance of bifurcations. With the modifications
classical spectrum to energi€&s>Eg, where the classical presented here, the technique of quantization by harmonic
motion is not completely bound, and to extract the semiclasinversion has reached a stage where it does not impose any
sical widths of the Stark resonances. A particular challenge isonditions on the classical dynamics of the system under
posed by the region around the Stark saddle-point energstudy, except that a semiclassical approximation to the re-
Es. Before the downhill orbit ceases to existE&g, it un-  sponse function can be given. Besides uniform approxima-
dergoes an infinite sequence of bifurcations, giving birth taions, any other nonstandard semiclassical contributions such
nonaxial orbits with arbitrarily high uphill repetition num- as diffractive corrections can be included. Thus, the har-
bers. If subsequent bifurcations of a single orbit are toanonic inversion can now be regarded as a truly universal
close, the uniform approximatiof8) is no longer appropri- tool for the semiclassical quantization of arbitrary systems.
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