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Abstract— Recent experiments[[1],[[2] have shown that a small  For these reasons a longstanding goal of optics research
number of fiber lasers can spontaneously form coherent states has been to produce laser arrays that are stable in the inphase
when suitably coupled. The observed synchrony persisted for a giata While these investigations have produced a number
long time without any active control. In this paper we develop a of approaches and interesting results, the ultimate goal of
dynamical model for fiber laser arrays that is valid in the high _pp_ ) ) g v H g
gain regime. In the limiting case of a single laser analysis and designing inphase arrays in a manner that is scalable with laser
simulations are presented that agree with physical expectations. number has remained elusive. A humber of these approaches
Using simulations to examine array behavior we report results are variations of the master oscillator multiple amplifier
that are in qualitative agreement with laboratory observations. (MOPA) concept. As the name implies MOPAs use an array of

Index Terms—coupled lasers, coherence, synchrony, two way amplifiers to boost a master signal. Due to inevitable amplifier

coupling, optical fibers, laser array. variations these arrays require active control of the relative
phases through additional circuitry that limit both array stabil-
. INTRODUCTION ity and scalability. Recent MOPA architectures have utilized

. - . . fiber laser developments to report output powers of 100 W
N differentiating the coherence displayed by optical mas zﬂ Evolving this approach a step further, MOPA amplifiers

(lasers) from "classical coherent behavior” Max Garbun ave been replaced by lasers (oscillatar$) [5]. These injection

wrote “the synchron|§m which is a cpnqmon O.f COheren?l%cking approaches rely on slaving each individual array laser
also extends to the timing of electronic interactions ... Thi % the master source. A common implementation is arrays
in broad outline, is the nature of coherent interactions.” [SLc evanescently couplled diode lasers. While diode arrail/s
The resulting macroscopic coherence from single lasers r}ce)lrsm coherent states, the anti-phase st;ate is most commonly
led to a host of applications. Yet there are situations where ag . . . .

- observed[[6]. Even if the inphase state can be formed in an
array of mutually cohe'r ent Iasgrs offers d|st!nct advantagesr.ray of diodes, the degree of control required to maintain
One notable example_ is the h'g.h -power th|cal source. T {is state as well as the basic physical architecture leaves the
power output from a single laser is constrained by its physica

characteristics. Common constraints include heat dissipatigrclalaIblllty to large of this solution an open and challenging

), H 1 (
mechanical breakdown, and power conversion efficiency. %Jestlon 71, 8], [B]

. . An alternative to these approaches is to utilize mutual
contrast, relatively low-power fiber lasers can have excellent L .
heat dissipation properties, relatively wide stability range aﬁe{nchronlzanon to produce inphase arrays. Mutual synchro-
P prop ' =1y wice Y range, ang -tion has the advantage of being passive (no active control
greater than 70% pump conversion efficiency. An array of . : .
. . . . Tequirement). This approach also does not require a master
these lasers provides an attractive alternative to the single N, A . . X
- ource, rather it utilizes intrinsic nonlinearity and appropriate
monolithic source.

laser connectivity to facilitate a frequency and phase distribu-
To take full advantage of coherence array components mus . I
S . ) . ioh that the array elements select. The phenomenon is familiar
maintain zero relative phases. The far field spatial power dis- . ; S .
N ; Tom nonlinear science studies in several areas of physics,
tribution depends crucially on two aspects of the array electric

. ) . fology, and engineering [10][[11]/[12]: under the right
gieslgiét(lgrge glee %rzeei tgf :r?;e(rze)nfﬁeOIeﬁZEV]ce'eIdsazrez_dl;(f:etﬂesecumstances a collection of coupled nonlinear oscillators will
. y . P sgontaneously form a synchronized dynamical state. At this
fields at the array output. In this paper, we call two Iase[

. . . L L evel of description, the laser array dynamics is governed by a
coherent if their respective electric fields maintain a constant . . . . . .

. ; ) . .set of coupled nonlinear oscillator equations, either differential
relative phasg If this phase is zero the lasers are said

t . . . . .
be in an inphase state; if the relative phase ke lasers are gquatmns [13],[14] or iterative maps. Meanwhile, the detailed

described as in an anti-phase state. Due to inevitable variatigr?st:ure of the quantum mechanics of the inverted population
L P " | and the electromagnetic cavity are not directly modeled. By

between individuals, an array a¥ isolated lasers will be . )
: . L . . .~~ focusing on the broader essentials of the problem we can
incoherent and the resulting spatial intensity distribution s . . . .
. . . . Investigate array sizes spanning several orders of magnitude
simply the sum of the intensity patterns from each laser. Since : . . .

i . ! . . ﬁnd a wide range of coupling architectures in a reasonable
adding the incoherent fields is equivalent to a random walk t & .

) L . amount of time.

peak intensity will increase &€§. In contrast, if allV lasers are

inphase the output intensity is concentrated in a narrow pengi primary motivation for this paper is the recent experimen-
P P y PENG work on coupled fiber arrays at HRL Laboratories, LLC [2].

at broadside (zero angle). This state is particularly attracti .
. ) . : 5 e experiments were based on very general lessons from cou-
since its peak intensity grows a¢-. . .
pled oscillator and network studies. Here, we develop a more

Iweaker definitions of coherence are possible, and may be relevant depé#l@ta'!ed theoretical descr'pt'_on of the coupled laser system,
ing on circumstances. keeping as general as possible the overall array architecture.
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A limitation worth noting is that the array configurations "¢ gaégggm coupler
we study here are composed of distinct lasers that interact PRI

. : : _ XX GRS
over a relatively small cavity length. We note that interesting : : KRR output

: : 55550505054 OutP

coherence has also been reported recently [15], [16] for a : XX : ERZIKE face
. . . . KKK
fiber system of multiple cores in a common glass cladding XL RIS
with interactions all along the cavity. The model we derive F(z,0)
is applicable to lasers with both high and low gain. In Sec. | | | | 7
[Mwe derive a set of coupled nonlinear iterative maps for =1 \ \ \ \
the system. The general formulation allows for a variety of 0 g_ &4 c_ L

distinct coupling schemes (Sdc.]lll). In Séc] IV we examine

the model analytically and numerically in the limiting case ofig. 1. Sketch of the laser array. Each component is described in the text
a single laser; identifying three distinct types of behavior thé&ecs[ andTl).

reproduce qualitatively those seen in experiments. Finally, in

Sec[V, we present some preliminary numerical results for the )
array. Next, asF,, passes through the coupler each wave is coupled

to other members of the array. Upon emerging at time

N
Il. DESCRIPTION OF THE SYSTEM Fu(c_,t1) — Z SumFon (L)
We consider a set ol fiber lasers as sketched in F[d. 1. m=1
On one end{ = 0) each separate fiber has a 100% reflective N
mirror. In the experiments at HRL Laboratories, LLC [2] fiber = 1> SumEm(L,1), 2
gratings with better than 98% reflectivity were used. At the m=1

other cavity end the output face mirror has reflectivitwhich  where the matrix elemerf,,,,, is the amount of then?” field

in practice is rather small. The lasers are independent excgt scatters into the'” fiber. (In the limit of no coupling,S
over the region labeled coupler (> c_), where the fields is the identity matrix.)

mix. This coupling region may take on several forms in the As the waves propagate freely from the coupler to the edge
laboratory. In between the mirrors are gain sections € of the gain sections at = g, each picks up a phase factor
z < g4) that in practice may use various gain media. Thgat may vary. Let, ,, denote the time at which the" wave
gain sections are connected to the cavity ends by non-gaaches the gain section. Then the acquired phase stiiftis

no-loss fiber sections. we(ta.n — t1), Wherew, is the carrier frequency, and
In what follows, we calculate the change in the field .
amplitudes over one cavity round trip. In this way we are led F(gist2n) = €V Fyleo,t1)
quite naturally to a set of coupled iterative maps that govern " N
the dynamics of the electric fields. We then deduce the iterative = —retn Z Snm Em (L, t). @)
maps that describe the evolution of the gains. m=1

The net effect is that each row of the coupling matrix is
multiplied by a phase shift. The same is true for the phase
A. Evolution of the electric fields shifts picked up within the gain sections and during the free
We decompose the electric fields into counter-propagatifRéPPagation from the gain sections to the reflectors. In order to
waves. LetE,(z,t) be the complex phasor amplitude fokeep our notation as simple as possible, we shall combine all
the right-going wave in thex*" fiber and letF,(z,t) be the of these contributions into the cumulative phase shiffg2.
corresponding quantity for the left-going wave. A cavity round Passing through the gain sections and to the gratings at
trip will begin with a right-going wave just prior to the outputz = 0 produces
face atz = L. The round trip is then made of the following N
steps: the waves (1) bounce off of the partially reflecting output Fo(0,t3,) = —reGn/2piPn/2 Z SpmEm(L,t).  (4)
face; (2) propagate through the coupler (during this part the m=1
amplitudes mix); (3) freely propagate to the edge of the gain Next, upon reflection off the mirrors at = 0, each left-

regions; (4) are amplified in passi_ng through the gain regio jing wave picks up & phase shift and becomes a right-going
(5) freely propagate to the reflectlv_e mirrors; (6) reflect ba_c_ 1ave En(0,t5.,,) = —Fy(0,5.,), assuming perfect reflectiv-
(7) propagate to the edge of the gain regions; (8) are amplifigd rinayy in propagating back to the starting point the gain,

again; (9) freely propagate to the coupler; and finally (10) pas§ypier, and free-propagation phase shift contributions are the
through the coupler to the output face. same as before. so that

We now consider each of these steps in turn. At the coupler
output face a fraction of each field is instantaneously reflected
by a factor0 < r < 1 and with ar phase shift, producing left
propagating waves

N
K, (La t+ Tn) = Z S’rmz,eGm/erd)m/2Em(Oa tS,m) (5)

m=1

whereT,, is the total round-trip time. Putting this all together,
F,.(L,t) = —rE,(L,1). (1) we obtain the following discrete map to describe the dynamics
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of the electromagnetic fields: where the total pumping ratéf,‘;(t) is defined by
N N L
Eo(Lit+T,) =71 Spee® %N " 8, B (L,t). (6) RE(t) = / RP(z,t)dz.
zz:; mzzjl 0

At this point, a common step is to assume that the ﬁeHsmg Eq. () to eliminate the intensities at the gratings-(0)

amplitudes vary only a little over one round trip, which allowd! Eq. I2) yields

one to recast the discrete map as a differential equation. AN, (t) . N, (t)

We will not make this slowly varying wave approximation: dt = Ry(t) - (13)
because of the low reflectivity of the output mirror we are 1 - "

especially interested in the high-gain limit, and in this limit o= L (L) = I (L 1)] -

the changes in the field can be substantial. The next step is to eliminaté; in favor of I;". To do this,

first integrate Eq.[(9) over the fiber lengthe [0, L] to get
B. Evolution of the gain fields

I-(L,t .
We now turn to the gain variableS,,. The counter propa- In L”_( : )} = —oN,(t). (14)
gating intensities are n (0,1)
Similarly, Eq. leads to
IF(zt) = |Eu(z,t)]"  and e £ 1) (L, 1)
_ I7(L,t -
I7(z,t) = |Fa(zt)?. In |22 = 6N, (t). 15
(rt) = 1Fa(z0) o] = 15)

Subtracting Eq.[(15) from E 4) gives
Assuming, as before, perfect reflectivity at= 0 implies 9 QE(L) DIHO C;EIL )9
I(0,t) = I,(0,1). (7) n [m] = —20N,(t).

We use the Rigrod analysis [17] for two way fibers, which igising Eq. [[7) to cancel the intensities at the gratings and
based on two partial differential equations for intensities argkponentiating the result produces
one equation for the time evolution of the atomic gain:

- — _QO'Nn(t) +
ot _ . i I7(Lt)=e I (L) (16)
D2 = +Na(z )0l (2,1), (®) Finally, by defining the gain fields as
73[58(2’” = Nu(s,0)0L; (1), and ©) Gn(t) = 20N, (1) (17)
z
ONn(2,t) = Ny (2,t) 10 and using Eq.[(]6) to eliminaté, (L,t) from Eq. [13) we
ot = Ru(zt) - T (10) find the governing differential equations for the gains
o + —
_ = . dG, 1
hw Nn(zvt) [In (th) + In (Z,t)] Z — ; [GZ(t) _ G”(t)] (18)
In these equationd,, (z, t) is the number of inverted atoms per 2 e )
unit length distributed along thet" fiber, o is the stimulated o (6 m = 1) |En(t)]”,

emission cross sectior, is the relaxation time, ande? is

the pumping rate of the!” fiber. In the Rigrod analysis time wheren =1,2,..., N and we have infroduced

derivatives in Eqs[(8) angl](9) are assumed small and ignored GP(t) = QUTﬁg(t) and
in comparison to the exponential spatial dependence of the hw
gains. It = —.

aT

We can use these equations to deduce the temporal evolution
of the gain fields by integrating/, (z,¢) over the fiber length C. Final iterated map model

Z I Together Eqs[(6) anfl ([18) provide a quantitative description
Nn(t) = / Ny, (z,t)dz. (11) forthe dynamics of the laser array. However, based on the type
0 of experiments we have in mind a few simplifying assumptions
Substituting Eqs/[{8) andl|(9) into Eq. {10) produces can be made.
ON,(z,t) ) N (z,t) Fir§t, we assume thgt all 'round trip tim&s are the same.
ot Ry (2,t) — - This is a reasonable since in the laboratory fibers are several
1 [0IF(z,t) OI7(z1) meters I_ong and they can be cut a(_:Cl_Jrater er_10_ugh so that all
e 02 - - round trip times are the same to within a negligible error. On

) ) ) ) the other hand, one must be careful about the effect of this
Upon integrating over the fiber lengthc [0, L] this becomes approximation on the phase shifts in Eq. (8): A miniscule

AN, ) Nn<t) change in fiber length, say less thaan, is still of the order
i Ry(t) — - (12) of the carrier wavelength, and therefore can introduce a phase
1 shift of order ofr. For this reason, we sé&t, = T for all n, but

" (L (L t) = L7 (0,) — I, (L,t) + I, (0,1)] , retain the corresponding phase factoi%. We also note that
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changes in the fiber lengths as large as the carrier wavelenfighd envelopes between pairs of array components over small
may also occur due to the Kerr effect, temperature changelassless coupler displacements. Since the surrounding glass is
stress. Hence, the phase shifts can be well represented byassumed to be isotropic the integrals must be equivalent under

some random distribution of angles. symmetric permutation. Thereby the matr{ is real and
The evolution equation for the electric fieldg] (6) thesymmetric. In principle, the elements 8f can be calculated
becomes from the physical properties of the coupler.

N N Equation [(Z#) is a linear matrix equation and can be solved
E,(t+T)= rz S, GO +ioe Z SemEm(t).  (19) analytically. Along the coupler of length’ the solution is
=1 m=1 ’
A g [E dzM(z)
Rather than deal with a hybrid dynamical system which E(L) =Te' b E(0), (25)
involves the iterated map Eq. {19) and the differential equatigfhere 7" denotes a time ordering operator and the integration
Eq. (18), we reduce the latter to an iterated map. Sifige interval [0, '] is equal to[c_, L] in Fig.[1. To evaluate the

varies slowly, we can assume it is constant over interv%?opagator (coupling matrix§ — T exp {j fL dzM(z)] we
comparable to the round trip tim&. This is also true for use a generalization of Euler's formula toofind

the pumpingG?. If we integrate [(IB) over tim& we obtain

1
T ) L m
Gult+T) = Gul®)+—[Gh—Gul]  (20) s=tm 11 1o u ()] 9
2T B m=n
I (1 —e€ GW)) (In (1)), If the entries of A/ do not depend or, the coupling matrix
st S reduces to
where T I . .

(I,(t)) = T[ dt | B, (t)|? (21) S = nh—{:go (1 +j; M) =el"M. (27)

is a time average of the field intensity in the fiberover In general, the coupling matrig will have complex elements
one round trip. In what follows we use a somewhat crudéat must satisfy the additional constraints imposed by the
approximation and takél,, (t)) =~ I,,(t). Substituting this into assumptions that are made.d. no-loss). Characterization of
Eq. (20) yields the final equations of motion, couplers in the laboratory is complicated by the need to
measure coupling phases as well as coupling intensities.

N
Eyt+T) = 1Y Apn(t)En(t) and (22)
m=1 IV. SINGLE FIBER DYNAMICS
G (t+T) = Gu(t)+e€e[GP —Gn(t)] (23)

o To assist in understanding the iterative map model defined

- (1 - e—Gn(t)) L,(t), by Egs. [ZP) and[(33) we first consider the case of a single
Lsat laser (Vv = 1). Setting A(t) = 7e“®, wherer is the field

where A,,, = 3, SpeeCetites, and ¢ = T/r. The reflection coefficient at the output face, EQ.|(22) implies

coefficients A,,,,, have only implicit time dependence. The

fluorescence time is usually much longer than the round E(t+T)= TGG(t>E(t)' (28)

trip time 7', so the parameter is a small number. For the AssumingG(t) is real, we obtain a map for the intensity;

fiber lasers under consideratidn [} 10~%.
I' = r2e%¢]. (29)

Hl. CoupLING Our notation drops explicit reference to time and the prime
An essential component of the array architecture is thfenotes a temporaf-shift (i.e. one iteration of the map or
coupling region, where fields from the individual array fibergavity round trip). From the gain equatidn [23), we have
interact. While evanescent coupling between electric fields is ) c
used to motivate our formulation the results are sufficiently G'=G+e[GP—G-21-e ). (30)

general that they can be used to describe a variety of couplifuge single laser map admits two fixed point solutions:
schemes. We will limit our discussion to single mode lasers.

Fiber crosstalk [[18] is an effect caused by evanescent I=0,G=ar (31)
coupling between electric fields that allows light to leak back
and forth between fibers. Over a small increment of coupI@F‘OI . oGP —(1)r) -
lengthdz the electric fields will satisfyl [19] 1= 30— G =1In(1/r). 32)
dE
- = JME. (24) The eigenvalues of the Jacobian matrix for the map evaluated

o o ] at the fixed point given by qu) arg = r2¢2¢" and
The electric fields of the individual fibers are the components _ 1 _ . gince, by definition) < ¢ < 1 this fixed point is

of the N-elem_ent vectolE = (Ey, E», .. . ]_EN), While M is stable for as long as
an N x N matrix whose terms are the pair interactions ater
The terms inM are equivalent to overlap integrals for electric G? <In(1/r). (33)
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Fig. 2. Plots of a few hundred intensity iterations after transients have
decayed over a range of pumping values. At the transcritical bifurcation the
laser turns on and the output intensity is a constant that increases linearly
with the pumping until the Hopf bifurcation. At larger pumping values the
laser displays complex temporal dynamics as well as additional dynamical
instabilities.

Physically, there is no lasing in this pumping regime, as the
loss due to partial reflection is larger than the gain induced by
pumping.

For the other fixed poinf (32) the eigenvalues of the Jacobian
matrix are

5 Fig. 3. Extension to larger pumping and intensities of the single laser
€ ~ € ~ ~ bifurcation diagram shown in Fig] 2. The Hopf bifurcation and subsequent
Az =1- 5(1 +2rl)+ \/4<1 +2r1)? —4e(1 —1)1. (34) stability transition are shown in (a) with an enlarged segment of the diagram
) ) that reveals frequency lockings between oscillations of the field and round
In the case of real eigenvalues, they will both be smaller thaip times shown in (b).
one as long ad > 0, or expressed in terms of pumping

parameter

GP > In(1/7). (35) In the case wherj (34) are complex we find that the square

) ) o magnitude of the eigenvalues for the “on” state is
Light intensity is of course always larger than zero, but

sometimes it is convenient to treAias a parameter instead of A2 =1—e(l+6rl —4I), (37)
the pumpingG? and let it assume both negative and positive
values. From expressiors {33) afid|(35) we conclude there i¢/ich is smaller than one as long as
(transcritical) bifurcation atz? = In(1/r). This corresponds . 1
to the onset of lasing, as the gain due to pumping becomes I<lIp= 1—6r (38)
larger than the loss through the output face. _

What is left to show is that the eigenvalugs](34) are indeéd I = I, the system undergoes a Hopf bifurcation (see Figs.
real in a finite neighborhood around = 0. To do so we [Z and[3). Expressed in terms of the pumping parameter, the
express the discriminad® () = (e2/4)(1+2rI)?—4e(1—r)I Hopf bifurcation occurs at

as a function off. This is negative inside an interval, ), 1—1r
where GP =Iln(1/r) + 75 (39)
_ _ —_r) — 2 2,2
Iio = dl-r)—ertVlAd-r) —a - er (36) As the pumping is increased beyond this value the fixed point

?67’2 (32) becomes unstable, and a stable limit cycle is created.

are solutions of equatio®(I) = 0. A direct consequence is The system behaves as a relaxation oscillator and instead of a
that bothI; » > 0 as long as the parameters: < 1. In Fig.[J constant intensity field, there is a series of pulses at the output
we plot a few hundred iterations after an initial transient ovéace (Fig[4).

the range ofG” values shown. The reflection coefficient is In order for a Hopf bifurcation to occud; » have to be
chosen to be = 0.187. Simulations demonstrate that the fixedeal, with I;, € (I3, I2). For the range of parameters under
point solution persists over a range of parameter values aswhsideration f ~ 107!, ¢ ~ 10~%) this is always true,

the onset of lasing occurs & = 1.67664 .. ., in agreement although it is possible to think about a laser model where
with the prediction of Eq.[(35). the Hopf bifurcation will be absent.
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. ) P . o . Fig. 5. Brightness measure (a) and the phase order parameter (b) over a range
Flg._ 4. Slngle_ laser ele_ctrlc flelq intensity (a) and gain flel_d (_b) durlng_ 4008 pumping values for an array of five\( = 5) all-to-all coupled lasers.
cavity round trips. At this pumping ofs? = 2.3 the model is in a pulsing

state.

. . . but of the same order as, the pumping. All of the lasers are
With further increase of the pumping parameter the system .
. . : . -assumed to have the same constant pumping valGg ofThe

undergoes another dynamical transition. The bifurcation dia- . ; 2 :
model is iterated until steady state behavior is sustained, as

gram in Fig[} reveals very rich dynamics beyond this pom(E'eﬁned by stable moments for the intensity of each laser. The

Thgre are a ngmber_ of frequency locking intervals as well @ectric fields and gain fields are then recorded for a sufficient
indications of intermittent chaos.

. . ' additional time to establish the long term array behavior.

Note that because we use discrete time, the field takes on . . ; L
e . - Typical array behaviors were found to be independent of initial
only a finite number of values in the frequency locked regimer Jitions

These are evident as “windows” in the bifurcation diagram . .
[Fig.[3(b)]. Regardless of whether the gain field oscillations are To better describe the array states we introduce two related

frequency locked with the round trip time, the pulses appeorder measures. Motivated by the array brightness the first is

[
to be quite regular for this range of pumping parameter (F|§.efmed as

@.
It is interesting to note that the onset of both the transcritical

and Hopf bifurcations are independentcofthe ratio between 5ng guantifies the degree of electric field amplitude and
fluorescence time and the round trip time. However, 0@&

N
belV =N Ep, (40)
m=1

) X e 'phase coherence. Physically, the array brightness is directly
simulations indicate that the onset of the subsequent stabi portional to the magnitude. The second measure is an

transition is proportional te. In the bifurcation graph in Fig. 4rqer parameter describing electric field phase order defined
[3 we used an exaggerated valae= 0.01 for better clarity as

of presentation. For the time scales found in experiments 4 1 M
(e ~ 10~%) our model suggests that this transition will occur roe’t = N > el (41)
after a very small increment of pumping paramet#r with m=1

respect to the Hopf onset, given by EQ.|(39). where#,, is them!" electric field phase. If all these phases are

the same, the magnitudg = 1. In contrast, if the phases are
V. LASERARRAY SIMULATIONS uniformly distributed,r; = 0. Due to the initial conditions of

Simulations of the array provide evidence of mutual syrihese simulations the order parameter magnitudes are initially
chronization producing array coherence. The experiments sgall, withry ~ 0.1.
ported in [2] demonstrated that groups of lasers can formOur simulations demonstrate that the single laser dynamics
coherent states without the need for any active control. Theovide substantial insight into the array behavior. For one,
first of these experiments used 5 lasers that were effectivéiie onset of lasing occurs at the same value of the pump
all-to-all coupled. To model this system we numerically solvegarameter. This is indicated by the phase order parameter
Egs. [22){(2B) withV = 5 and an all-to-all coupling matrix. (Fig. [5) which assumes around 80% of its maximum value
Based on an analogy with fiber crosstalk we approximate thethe onset of lasing and remains so €t < 3. (The phase
diagonal terms of the coupling generator to g,, = 2.546 order parameter is not defined when the fields are zero, but
and the off diagonal terms to be046. We also assume thatthe natural convention is to set it to zero in this regime.)
all phase factors in Eq9) ard?» = 1. Simulations begin For larger values of pumping the coherence gradually decays
with each laser in an off-state: the initial electric fields arand for G? > 5 the phases are approximately randomly
chosen at random so that the magnitudes are of order 0.1 aigfributed. Transient response of the system is of ot@ér
the phases are uniformly distributed. To cut down on transiemtsund trip times (Fig[]6). This corresponds to approximately
the initial gain fields are set to have a magnitude less thenfew milliseconds in the laboratoryl[2].
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Fig. 6. Temporal evolution of the phase order parameter for pum@ifig=
1.8 (@) andGF = 2.1 (b).

Output intensity of a single fiber increases with the pum
In order to obtain large intensity at the array output face it
necessary to maintain coherence as the pumping is increaged.
By calculating brightness of the array we find that large

output intensity is reached for pumping values < G? < 3.

(1]
(2]

(3]

(4]

(5]
(6]

[7]
(8]

El

o

B

For a number of the coupling matrices we investigated, like
the one used for the simulations summarized in Fg. 5, the]
array phase coherence decayed with increasing pumpingtljﬁ

was found that the rate and degree of this decay depended
sensitively on the coupling matrix. In the 5-to-1 experimen
shown in Ref. [[2] the array selected a nearly ideal inpha

b

state when operated around twice the onset pumping. With the
properly chosen coupling matrix the model introduced heH#!
will display nearly inphase states over a range of pumping

values.

[17]
Summarizing, we have described a theoretical model fgg
coupled laser arrays with high gain. Using a somewhat

idealized all-to-all coupling between fibers we observed tHhe]
spontaneous mutual synchronization similar to the laboratory

investigations [[2] that motivated this work. Of course, no

physically realizable coupler will have the perfect permutation
symmetry we assumed. On the other hand we can view the five
different pumping parameters to be independent and tunable

control parameters. In the cases shown we set them all equal. It

is reasonable to expect that for couplers with different (lower)

symmetry it would be possible to find a range of pumping
parameters that would result in a spontaneous synchronizatid
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