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Abstract— Recent experiments [1], [2] have shown that a small
number of fiber lasers can spontaneously form coherent states
when suitably coupled. The observed synchrony persisted for a
long time without any active control. In this paper we develop a
dynamical model for fiber laser arrays that is valid in the high
gain regime. In the limiting case of a single laser analysis and
simulations are presented that agree with physical expectations.
Using simulations to examine array behavior we report results
that are in qualitative agreement with laboratory observations.

Index Terms— coupled lasers, coherence, synchrony, two way
coupling, optical fibers, laser array.

I. I NTRODUCTION

I N differentiating the coherence displayed by optical masers
(lasers) from “classical coherent behavior” Max Garbuny

wrote “the synchronism which is a condition of coherence
also extends to the timing of electronic interactions ... This,
in broad outline, is the nature of coherent interactions.” [3].
The resulting macroscopic coherence from single lasers has
led to a host of applications. Yet there are situations where an
array of mutually coherent lasers offers distinct advantages.
One notable example is the high-power optical source. The
power output from a single laser is constrained by its physical
characteristics. Common constraints include heat dissipation,
mechanical breakdown, and power conversion efficiency. In
contrast, relatively low-power fiber lasers can have excellent
heat dissipation properties, relatively wide stability range, and
greater than 70% pump conversion efficiency. An array of
these lasers provides an attractive alternative to the single
monolithic source.

To take full advantage of coherence array components must
maintain zero relative phases. The far field spatial power dis-
tribution depends crucially on two aspects of the array electric
fields: (1) the degree of coherence of the fields produced by
distinct array elements and (2) the relative phases of these
fields at the array output. In this paper, we call two lasers
coherent if their respective electric fields maintain a constant
relative phase1. If this phase is zero the lasers are said to
be in an inphase state; if the relative phase isπ the lasers are
described as in an anti-phase state. Due to inevitable variations
between individuals, an array ofN isolated lasers will be
incoherent and the resulting spatial intensity distribution is
simply the sum of the intensity patterns from each laser. Since
adding the incoherent fields is equivalent to a random walk the
peak intensity will increase asN . In contrast, if allN lasers are
inphase the output intensity is concentrated in a narrow pencil
at broadside (zero angle). This state is particularly attractive
since its peak intensity grows asN2.

1Weaker definitions of coherence are possible, and may be relevant depend-
ing on circumstances.

For these reasons a longstanding goal of optics research
has been to produce laser arrays that are stable in the inphase
state. While these investigations have produced a number
of approaches and interesting results, the ultimate goal of
designing inphase arrays in a manner that is scalable with laser
number has remained elusive. A number of these approaches
are variations of the master oscillator multiple amplifier
(MOPA) concept. As the name implies MOPAs use an array of
amplifiers to boost a master signal. Due to inevitable amplifier
variations these arrays require active control of the relative
phases through additional circuitry that limit both array stabil-
ity and scalability. Recent MOPA architectures have utilized
fiber laser developments to report output powers of 100 W
[4]. Evolving this approach a step further, MOPA amplifiers
have been replaced by lasers (oscillators) [5]. These injection
locking approaches rely on slaving each individual array laser
to the master source. A common implementation is arrays
of evanescently coupled diode lasers. While diode arrays
form coherent states, the anti-phase state is most commonly
observed [6]. Even if the inphase state can be formed in an
array of diodes, the degree of control required to maintain
this state as well as the basic physical architecture leaves the
scalability to largeN of this solution an open and challenging
question [7], [8], [9].

An alternative to these approaches is to utilize mutual
synchronization to produce inphase arrays. Mutual synchro-
nization has the advantage of being passive (no active control
requirement). This approach also does not require a master
source, rather it utilizes intrinsic nonlinearity and appropriate
laser connectivity to facilitate a frequency and phase distribu-
tion that the array elements select. The phenomenon is familiar
from nonlinear science studies in several areas of physics,
biology, and engineering [10], [11], [12]: under the right
circumstances a collection of coupled nonlinear oscillators will
spontaneously form a synchronized dynamical state. At this
level of description, the laser array dynamics is governed by a
set of coupled nonlinear oscillator equations, either differential
equations [13], [14] or iterative maps. Meanwhile, the detailed
nature of the quantum mechanics of the inverted population
and the electromagnetic cavity are not directly modeled. By
focusing on the broader essentials of the problem we can
investigate array sizes spanning several orders of magnitude
and a wide range of coupling architectures in a reasonable
amount of time.

A primary motivation for this paper is the recent experimen-
tal work on coupled fiber arrays at HRL Laboratories, LLC [2].
The experiments were based on very general lessons from cou-
pled oscillator and network studies. Here, we develop a more
detailed theoretical description of the coupled laser system,
keeping as general as possible the overall array architecture.
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A limitation worth noting is that the array configurations
we study here are composed of distinct lasers that interact
over a relatively small cavity length. We note that interesting
coherence has also been reported recently [15], [16] for a
fiber system of multiple cores in a common glass cladding
with interactions all along the cavity. The model we derive
is applicable to lasers with both high and low gain. In Sec.
II we derive a set of coupled nonlinear iterative maps for
the system. The general formulation allows for a variety of
distinct coupling schemes (Sec. III). In Sec. IV we examine
the model analytically and numerically in the limiting case of
a single laser; identifying three distinct types of behavior that
reproduce qualitatively those seen in experiments. Finally, in
Sec. V, we present some preliminary numerical results for the
array.

II. D ESCRIPTION OF THE SYSTEM

We consider a set ofN fiber lasers as sketched in Fig. 1.
On one end (z = 0) each separate fiber has a 100% reflective
mirror. In the experiments at HRL Laboratories, LLC [2] fiber
gratings with better than 98% reflectivity were used. At the
other cavity end the output face mirror has reflectivityr which
in practice is rather small. The lasers are independent except
over the region labeled coupler (z ≥ c−), where the fields
mix. This coupling region may take on several forms in the
laboratory. In between the mirrors are gain sections (g− ≤
z ≤ g+) that in practice may use various gain media. The
gain sections are connected to the cavity ends by non-gain,
no-loss fiber sections.

In what follows, we calculate the change in the field
amplitudes over one cavity round trip. In this way we are led
quite naturally to a set of coupled iterative maps that govern
the dynamics of the electric fields. We then deduce the iterative
maps that describe the evolution of the gains.

A. Evolution of the electric fields

We decompose the electric fields into counter-propagating
waves. LetEn(z, t) be the complex phasor amplitude for
the right-going wave in thenth fiber and letFn(z, t) be the
corresponding quantity for the left-going wave. A cavity round
trip will begin with a right-going wave just prior to the output
face atz = L. The round trip is then made of the following
steps: the waves (1) bounce off of the partially reflecting output
face; (2) propagate through the coupler (during this part the
amplitudes mix); (3) freely propagate to the edge of the gain
regions; (4) are amplified in passing through the gain regions;
(5) freely propagate to the reflective mirrors; (6) reflect back;
(7) propagate to the edge of the gain regions; (8) are amplified
again; (9) freely propagate to the coupler; and finally (10) pass
through the coupler to the output face.

We now consider each of these steps in turn. At the coupler
output face a fraction of each field is instantaneously reflected
by a factor0 < r < 1 and with aπ phase shift, producing left
propagating waves

Fn(L, t) = −rEn(L, t). (1)

output

g − g + c −

z

0 L

��
��
��
��
��
�

��
��
��
��
��
�

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

..
..

F(z,t)

reflector

..
..

E(z,t)

couplergain sections

face

Fig. 1. Sketch of the laser array. Each component is described in the text
(Secs. II and III).

Next, asFn passes through the coupler each wave is coupled
to other members of the array. Upon emerging at timet1

Fn(c−, t1) =
N∑
m=1

SnmFm(L, t)

= −r
N∑
m=1

SnmEm(L, t), (2)

where the matrix elementSnm is the amount of themth field
that scatters into thenth fiber. (In the limit of no coupling,S
is the identity matrix.)

As the waves propagate freely from the coupler to the edge
of the gain sections atz = g+, each picks up a phase factor
that may vary. Lett2,n denote the time at which thenth wave
reaches the gain section. Then the acquired phase shift isψn =
ωc(t2,n − t1), whereωc is the carrier frequency, and

Fn(g+, t2,n) = ejψnFn(c−, t1)

= −rejψn

N∑
m=1

SnmEm(L, t). (3)

The net effect is that each row of the coupling matrix is
multiplied by a phase shift. The same is true for the phase
shifts picked up within the gain sections and during the free
propagation from the gain sections to the reflectors. In order to
keep our notation as simple as possible, we shall combine all
of these contributions into the cumulative phase shiftsφn/2.

Passing through the gain sections and to the gratings at
z = 0 produces

Fn(0, t3,n) = −reGn/2ejφn/2
N∑
m=1

SnmEm(L, t). (4)

Next, upon reflection off the mirrors atz = 0, each left-
going wave picks up aπ phase shift and becomes a right-going
waveEn(0, t3,n) = −Fn(0, t3,n), assuming perfect reflectiv-
ity. Finally, in propagating back to the starting point the gain,
coupler, and free-propagation phase shift contributions are the
same as before, so that

En(L, t+ Tn) =
N∑
m=1

Snme
Gm/2ejφm/2Em(0, t3,m) (5)

whereTn is the total round-trip time. Putting this all together,
we obtain the following discrete map to describe the dynamics
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of the electromagnetic fields:

En(L, t+ Tn) = r
N∑
`=1

Sn`e
G`+jφ`

N∑
m=1

S`mEm(L, t). (6)

At this point, a common step is to assume that the field
amplitudes vary only a little over one round trip, which allows
one to recast the discrete map as a differential equation.
We will not make this slowly varying wave approximation:
because of the low reflectivity of the output mirror we are
especially interested in the high-gain limit, and in this limit
the changes in the field can be substantial.

B. Evolution of the gain fields

We now turn to the gain variablesGn. The counter propa-
gating intensities are

I+
n (z, t) = |En(z, t)|2 and
I−n (z, t) = |Fn(z, t)|2 .

Assuming, as before, perfect reflectivity atz = 0 implies

I+
n (0, t) = I−n (0, t). (7)

We use the Rigrod analysis [17] for two way fibers, which is
based on two partial differential equations for intensities and
one equation for the time evolution of the atomic gain:

∂I+
n (z, t)
∂z

= +Nn(z, t)σI+
n (z, t), (8)

∂I−n (z, t)
∂z

= −Nn(z, t)σI−n (z, t), and (9)

∂Nn(z, t)
∂t

= Rpn(z, t)−
Nn(z, t)

τ
(10)

− σ

h̄ω
Nn(z, t)

[
I+
n (z, t) + I−n (z, t)

]
.

In these equationsNn(z, t) is the number of inverted atoms per
unit length distributed along thenth fiber, σ is the stimulated
emission cross section,τ is the relaxation time, andRpn is
the pumping rate of thenth fiber. In the Rigrod analysis time
derivatives in Eqs. (8) and (9) are assumed small and ignored
in comparison to the exponential spatial dependence of the
gains.

We can use these equations to deduce the temporal evolution
of the gain fields by integratingNn(z, t) over the fiber length
z;

N̂n(t) =
∫ L

0

Nn(z, t)dz. (11)

Substituting Eqs. (8) and (9) into Eq. (10) produces

∂Nn(z, t)
∂t

= Rpn(z, t)−
Nn(z, t)

τ

− 1
h̄ω

[
∂I+
n (z, t)
∂z

− ∂I−n (z, t)
∂z

]
.

Upon integrating over the fiber lengthz ∈ [0, L] this becomes

dN̂n
dt

= R̂pn(t)−
N̂n(t)
τ

(12)

− 1
h̄ω

[
I+
n (L, t)− I+

n (0, t)− I−n (L, t) + I−n (0, t)
]
,

where the total pumping ratêRpn(t) is defined by

R̂pn(t) =
∫ L

0

Rpn(z, t)dz.

Using Eq. (7) to eliminate the intensities at the gratings (z = 0)
in Eq. (12) yields

dN̂n(t)
dt

= R̂pn(t)−
N̂n(t)
τ

(13)

+
1
h̄ω

[
I−n (L, t)− I+

n (L, t)
]
.

The next step is to eliminateI−n in favor of I+
n . To do this,

first integrate Eq. (9) over the fiber lengthz ∈ [0, L] to get

ln
[
I−n (L, t)
I−n (0, t)

]
= −σN̂n(t). (14)

Similarly, Eq. (8) leads to

ln
[
I+
n (L, t)
I+
n (0, t)

]
= σN̂n(t). (15)

Subtracting Eq. (15) from Eq. (14) gives

ln
[
I−n (L, t)I+

n (0, t)
I+
n (L, t)I−n (0, t)

]
= −2σN̂n(t).

Using Eq. (7) to cancel the intensities at the gratings and
exponentiating the result produces

I−n (L, t) = e−2σN̂n(t)I+
n (L, t). (16)

Finally, by defining the gain fields as

Gn(t) = 2σN̂n(t) (17)

and using Eq. (16) to eliminateI−n (L, t) from Eq. (13) we
find the governing differential equations for the gains

dGn
dt

=
1
τ

[Gpn(t)−Gn(t)] (18)

+
2

τIsat

(
e−Gn(t) − 1

)
|En(t)|2 ,

wheren = 1, 2, . . . , N and we have introduced

Gpn(t) = 2στR̂pn(t) and

Isat =
h̄ω

στ
.

C. Final iterated map model

Together Eqs. (6) and (18) provide a quantitative description
for the dynamics of the laser array. However, based on the type
of experiments we have in mind a few simplifying assumptions
can be made.

First, we assume that all round trip timesTn are the same.
This is a reasonable since in the laboratory fibers are several
meters long and they can be cut accurately enough so that all
round trip times are the same to within a negligible error. On
the other hand, one must be careful about the effect of this
approximation on the phase shiftsφn in Eq. (6): A miniscule
change in fiber length, say less than 1µm, is still of the order
of the carrier wavelength, and therefore can introduce a phase
shift of order ofπ. For this reason, we setTn = T for all n, but
retain the corresponding phase factorsejφn . We also note that
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changes in the fiber lengths as large as the carrier wavelength
may also occur due to the Kerr effect, temperature change or
stress. Hence, the phase shiftsφn can be well represented by
some random distribution of angles.

The evolution equation for the electric fields (6) then
becomes

En(t+ T ) = r
N∑
`=1

Sn`e
G`(t)+jφ`

N∑
m=1

S`mEm(t). (19)

Rather than deal with a hybrid dynamical system which
involves the iterated map Eq. (19) and the differential equation
Eq. (18), we reduce the latter to an iterated map. SinceGn
varies slowly, we can assume it is constant over intervals
comparable to the round trip timeT . This is also true for
the pumpingGpn. If we integrate (18) over timeT we obtain

Gn(t+ T ) = Gn(t) +
T

τ
[Gpn −Gn(t)] (20)

− 2T
τIsat

(
1− e−Gn(t)

)
〈In(t)〉,

where

〈In(t)〉 =
1
T

∫ t+T

t

dt |En(t)|2 (21)

is a time average of the field intensity in the fibern over
one round trip. In what follows we use a somewhat cruder
approximation and take〈In(t)〉 ≈ In(t). Substituting this into
Eq. (20) yields the final equations of motion,

En(t+ T ) = r

N∑
m=1

Anm(t)Em(t) and (22)

Gn(t+ T ) = Gn(t) + ε [Gpn −Gn(t)] (23)

− 2ε
Isat

(
1− e−Gn(t)

)
In(t),

where Anm =
∑
` Sn`e

G`+jφ`S`m and ε = T/τ . The
coefficientsAnm have only implicit time dependence. The
fluorescence timeτ is usually much longer than the round
trip time T , so the parameterε is a small number. For the
fiber lasers under consideration [2]ε ∼ 10−4.

III. C OUPLING

An essential component of the array architecture is the
coupling region, where fields from the individual array fibers
interact. While evanescent coupling between electric fields is
used to motivate our formulation the results are sufficiently
general that they can be used to describe a variety of coupling
schemes. We will limit our discussion to single mode lasers.

Fiber crosstalk [18] is an effect caused by evanescent
coupling between electric fields that allows light to leak back
and forth between fibers. Over a small increment of coupler
lengthdz the electric fields will satisfy [19]

dE
dz

= jME. (24)

The electric fields of the individual fibers are the components
of theN -element vectorE = (E1, E2, . . . , EN ), while M is
anN×N matrix whose terms are the pair interactions overdz.
The terms inM are equivalent to overlap integrals for electric

field envelopes between pairs of array components over small
lossless coupler displacements. Since the surrounding glass is
assumed to be isotropic the integrals must be equivalent under
symmetric permutation. Thereby the matrixM is real and
symmetric. In principle, the elements ofM can be calculated
from the physical properties of the coupler.

Equation (24) is a linear matrix equation and can be solved
analytically. Along the coupler of lengthL′ the solution is

E(L′) = Tej
R L′
0 dzM(z) E(0), (25)

whereT denotes a time ordering operator and the integration
interval [0, L′] is equal to[c−, L] in Fig. 1. To evaluate the

propagator (coupling matrix)S = T exp
[
j
∫ L′

0
dzM(z)

]
we

use a generalization of Euler’s formula to find

S = lim
n→∞

1∏
m=n

[
1 + j

L′

n
M

(m
n
L′

)]
. (26)

If the entries ofM do not depend onz, the coupling matrix
S reduces to

S = lim
n→∞

(
1 + j

L′

n
M

)n
= ejLM . (27)

In general, the coupling matrixS will have complex elements
that must satisfy the additional constraints imposed by the
assumptions that are made (e.g. no-loss). Characterization of
couplers in the laboratory is complicated by the need to
measure coupling phases as well as coupling intensities.

IV. SINGLE FIBER DYNAMICS

To assist in understanding the iterative map model defined
by Eqs. (22) and (23) we first consider the case of a single
laser (N = 1). SettingA(t) = reG(t), wherer is the field
reflection coefficient at the output face, Eq. (22) implies

E(t+ T ) = reG(t)E(t). (28)

AssumingG(t) is real, we obtain a map for the intensity;

I ′ = r2e2GI. (29)

Our notation drops explicit reference to time and the prime
denotes a temporalT -shift (i.e. one iteration of the map or
cavity round trip). From the gain equation (23), we have

G′ = G+ ε
[
Gp −G− 2(1− e−G)I

]
. (30)

The single laser map admits two fixed point solutions:

Ĩ = 0, G̃ = Gp (31)

and

Ĩ =
Gp − ln(1/r)

2(1− r)
, G̃ = ln(1/r). (32)

The eigenvalues of the Jacobian matrix for the map evaluated
at the fixed point given by Eq. (31) areλ1 = r2e2G

p

and
λ2 = 1− ε. Since, by definition,0 < ε < 1 this fixed point is
stable for as long as

Gp < ln(1/r). (33)
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Fig. 2. Plots of a few hundred intensity iterations after transients have
decayed over a range of pumping values. At the transcritical bifurcation the
laser turns on and the output intensity is a constant that increases linearly
with the pumping until the Hopf bifurcation. At larger pumping values the
laser displays complex temporal dynamics as well as additional dynamical
instabilities.

Physically, there is no lasing in this pumping regime, as the
loss due to partial reflection is larger than the gain induced by
pumping.

For the other fixed point (32) the eigenvalues of the Jacobian
matrix are

λ1,2 = 1− ε

2
(1+2rĨ)±

√
ε2

4
(1 + 2rĨ)2 − 4ε(1− r)Ĩ . (34)

In the case of real eigenvalues, they will both be smaller than
one as long as̃I > 0, or expressed in terms of pumping
parameter

Gp > ln(1/r). (35)

Light intensity is of course always larger than zero, but
sometimes it is convenient to treatĨ as a parameter instead of
the pumpingGp and let it assume both negative and positive
values. From expressions (33) and (35) we conclude there is a
(transcritical) bifurcation atGp = ln(1/r). This corresponds
to the onset of lasing, as the gain due to pumping becomes
larger than the loss through the output face.

What is left to show is that the eigenvalues (34) are indeed
real in a finite neighborhood around̃I = 0. To do so we
express the discriminantD(Ĩ) = (ε2/4)(1+2rĨ)2−4ε(1−r)Ĩ
as a function of̃I. This is negative inside an interval(I1, I2),
where

I1,2 =
4(1− r)− εr ±

√
[4(1− r)− εr]2 − ε2r2

2εr2
(36)

are solutions of equationD(Ĩ) = 0. A direct consequence is
that bothI1,2 > 0 as long as the parametersr, ε < 1. In Fig. 2
we plot a few hundred iterations after an initial transient over
the range ofGP values shown. The reflection coefficient is
chosen to ber = 0.187. Simulations demonstrate that the fixed
point solution persists over a range of parameter values and
the onset of lasing occurs atGp = 1.67664 . . ., in agreement
with the prediction of Eq. (35).

Fig. 3. Extension to larger pumping and intensities of the single laser
bifurcation diagram shown in Fig. 2. The Hopf bifurcation and subsequent
stability transition are shown in (a) with an enlarged segment of the diagram
that reveals frequency lockings between oscillations of the field and round
trip times shown in (b).

In the case when (34) are complex we find that the square
magnitude of the eigenvalues for the “on” state is

|λ1,2|2 = 1− ε(1 + 6rĨ − 4Ĩ), (37)

which is smaller than one as long as

Ĩ < Ih =
1

4− 6r
. (38)

At Ĩ = Ih the system undergoes a Hopf bifurcation (see Figs.
2 and 3). Expressed in terms of the pumping parameter, the
Hopf bifurcation occurs at

Gp = ln(1/r) +
1− r

2− 3r
. (39)

As the pumping is increased beyond this value the fixed point
(32) becomes unstable, and a stable limit cycle is created.
The system behaves as a relaxation oscillator and instead of a
constant intensity field, there is a series of pulses at the output
face (Fig. 4).

In order for a Hopf bifurcation to occur,I1,2 have to be
real, with Ih ∈ (I1, I2). For the range of parameters under
consideration (r ∼ 10−1, ε ∼ 10−4) this is always true,
although it is possible to think about a laser model where
the Hopf bifurcation will be absent.
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Fig. 4. Single laser electric field intensity (a) and gain field (b) during 4000
cavity round trips. At this pumping ofGp = 2.3 the model is in a pulsing
state.

With further increase of the pumping parameter the system
undergoes another dynamical transition. The bifurcation dia-
gram in Fig. 3 reveals very rich dynamics beyond this point.
There are a number of frequency locking intervals as well as
indications of intermittent chaos.

Note that because we use discrete time, the field takes on
only a finite number of values in the frequency locked regime.
These are evident as “windows” in the bifurcation diagram
[Fig. 3(b)]. Regardless of whether the gain field oscillations are
frequency locked with the round trip time, the pulses appear
to be quite regular for this range of pumping parameter (Fig.
4).

It is interesting to note that the onset of both the transcritical
and Hopf bifurcations are independent ofε, the ratio between
fluorescence time and the round trip time. However, our
simulations indicate that the onset of the subsequent stability
transition is proportional toε. In the bifurcation graph in Fig.
3 we used an exaggerated valueε = 0.01 for better clarity
of presentation. For the time scales found in experiments
(ε ∼ 10−4) our model suggests that this transition will occur
after a very small increment of pumping parameterGp with
respect to the Hopf onset, given by Eq. (39).

V. L ASER ARRAY SIMULATIONS

Simulations of the array provide evidence of mutual syn-
chronization producing array coherence. The experiments re-
ported in [2] demonstrated that groups of lasers can form
coherent states without the need for any active control. The
first of these experiments used 5 lasers that were effectively
all-to-all coupled. To model this system we numerically solved
Eqs. (22)-(23) withN = 5 and an all-to-all coupling matrix.
Based on an analogy with fiber crosstalk we approximate the
diagonal terms of the coupling generator to beMnn = 2.546
and the off diagonal terms to be0.046. We also assume that
all phase factors in Eq. (19) areejφn = 1. Simulations begin
with each laser in an off-state: the initial electric fields are
chosen at random so that the magnitudes are of order 0.1 and
the phases are uniformly distributed. To cut down on transients
the initial gain fields are set to have a magnitude less then,
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Fig. 5. Brightness measure (a) and the phase order parameter (b) over a range
of pumping values for an array of five (N = 5) all-to-all coupled lasers.

but of the same order as, the pumping. All of the lasers are
assumed to have the same constant pumping value ofGP . The
model is iterated until steady state behavior is sustained, as
defined by stable moments for the intensity of each laser. The
electric fields and gain fields are then recorded for a sufficient
additional time to establish the long term array behavior.
Typical array behaviors were found to be independent of initial
conditions.

To better describe the array states we introduce two related
order measures. Motivated by the array brightness the first is
defined as

bejψ =
N∑
m=1

Em, (40)

and quantifies the degree of electric field amplitude and
phase coherence. Physically, the array brightness is directly
proportional to the magnitudeb. The second measure is an
order parameter describing electric field phase order defined
as

rθe
jξ =

1
N

N∑
m=1

ejθm , (41)

whereθm is themth electric field phase. If all these phases are
the same, the magnituderθ = 1. In contrast, if the phases are
uniformly distributed,rθ = 0. Due to the initial conditions of
these simulations the order parameter magnitudes are initially
small, with rθ ≈ 0.1.

Our simulations demonstrate that the single laser dynamics
provide substantial insight into the array behavior. For one,
the onset of lasing occurs at the same value of the pump
parameter. This is indicated by the phase order parameter
(Fig. 5) which assumes around 80% of its maximum value
at the onset of lasing and remains so forGp < 3. (The phase
order parameter is not defined when the fields are zero, but
the natural convention is to set it to zero in this regime.)
For larger values of pumping the coherence gradually decays
and for Gp > 5 the phases are approximately randomly
distributed. Transient response of the system is of order105

round trip times (Fig. 6). This corresponds to approximately
a few milliseconds in the laboratory [2].
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Fig. 6. Temporal evolution of the phase order parameter for pumpingGP =
1.8 (a) andGP = 2.1 (b).

Output intensity of a single fiber increases with the pump.
In order to obtain large intensity at the array output face it is
necessary to maintain coherence as the pumping is increased.
By calculating brightness of the array we find that largest
output intensity is reached for pumping values2.5 < Gp < 3.
For a number of the coupling matrices we investigated, like
the one used for the simulations summarized in Fig. 5, the
array phase coherence decayed with increasing pumping. It
was found that the rate and degree of this decay depended
sensitively on the coupling matrix. In the 5-to-1 experiments
shown in Ref. [2] the array selected a nearly ideal inphase
state when operated around twice the onset pumping. With the
properly chosen coupling matrix the model introduced here
will display nearly inphase states over a range of pumping
values.

Summarizing, we have described a theoretical model for
coupled laser arrays with high gain. Using a somewhat
idealized all-to-all coupling between fibers we observed the
spontaneous mutual synchronization similar to the laboratory
investigations [2] that motivated this work. Of course, no
physically realizable coupler will have the perfect permutation
symmetry we assumed. On the other hand we can view the five
different pumping parameters to be independent and tunable
control parameters. In the cases shown we set them all equal. It
is reasonable to expect that for couplers with different (lower)
symmetry it would be possible to find a range of pumping
parameters that would result in a spontaneous synchronization.
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