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Exercises

Exercise 8.1 Fundamental domain fixed points. Use the formula (6.11)
for billiard fundamental matrix to compute the periods Tp and the expanding
eigenvalues Λp of the fundamental domain 0 (the 2-cycle of the complete 3-disk
space) and 1 (the 3-cycle of the complete 3-disk space) fixed points:

Tp Λp
0: R− 2 R− 1 +R

√
1− 2/R

1: R−
√

3 − 2R√
3

+ 1− 2R√
3

√
1−

√
3/R

(8.22)

We have set the disk radius to a = 1.

Exercise 8.2 Fundamental domain 2-cycle. Verify that for the 10-cycle the
cycle length and the trace of the fundamental matrix are given by

L10 = 2
√
R2 −

√
3R+ 1− 2,

trJ10 = 2L10 + 2 +
1
2
L10(L10 + 2)2√

3R/2− 1
. (8.23)

The 10-cycle is drawn in figure 11.6. The unstable eigenvalue Λ10 follows from (4.19).

Exercise 8.3 A limit cycle with analytic stability exponent. There are only
two examples of nonlinear flows for which the stability eigenvalues can be evaluated
analytically. Both are cheats. One example is the 2-d flow

q̇ = p+ q(1 − q2 − p2) , ṗ = −q + p(1− q2 − p2) . (8.24)

Determine all periodic solutions of this flow, and determine analytically their stability
exponents. Hint: go to polar coordinates (q, p) = (r cos θ, r sin θ).

G. Bard Ermentrout

Exercise 8.4 The other example of a limit cycle with analytic stability ex-

ponent. What is the other example of a nonlinear flow for which the stability

eigenvalues can be evaluated analytically? Hint: email G.B. Ermentrout.

Exercise 8.5 Yet another example of a limit cycle with analytic stability

exponent. Prove G.B. Ermentrout wrong by solving a third example (or more) of

a nonlinear flow for which the stability eigenvalues can be evaluated analytically.
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are determined many places, for example in ref. [9.5].

There are conditions on the derivative of f at the origin to assure that the con-

jugation is always possible. These conditions are formulated in ref. [1.20], among

others.

Chapter 8

Solution 8.3: A limit cycle with analytic stability exponent. The 2-d
flow (8.24) is cooked up so that x(t) = (q(t), p(t)) is separable (check!) in polar
coordinates q = r cosφ , p = r sinφ :

ṙ = r(1 − r2) , φ̇ = 1 . (N.9)

In the (r, φ) coordinates the flow starting at any r > 0 is attracted to the r = 1 limit
cycle, with the angular coordinate φ wraping around with a constant angular velocity
Ω = 1. The non–wandering set of this flow consists of the r = 0 equilibrium and the
r = 1 limit cycle.

equilibrium stability: As the change of coordinates is defined everywhere except
at the the equilibrium point (r = 0, any φ), the equilibrium stability matrix (4.26) has
to be computed in the original (q, p) coordinates,

A =
[

1 1
−1 1

]
. (N.10)

The eigenvalues are λ = μ± i ν = 1± i , indicating that the origin is linearly unstable,
with nearby trajectories spiralling out with the constant angular velocity Ω = 1. The
Poincaré section (p = 0, for example) return map is in this case also a stroboscopic
map, strobed at the period (Poincaré section return time) T = 2π/Ω = 2π. The radial
stability multiplier per one Poincaré return is |Λ| = eμT = e2π .

Limit cycle stability: From (N.9) the stability matrix is diagonal in the (r, φ)
coordinates,

A =
[

1− 3r2 0
0 0

]
. (N.11)

The vanishing of the angular λθ = 0 eigenvalue is due to the rotational invariance of
the equations of motion along φ direction. The expanding λr = 1 radial eigenvalue
of the equilibrium r = 0 confirms the above equilibrium stability calculation. The
contracting λr = −2 eigenvalue at r = 1 decreases the radial deviations from r = 1
with the radial stability multiplier Λr = eμT = e−4π per one Poincaré return. This
limit cycle is very attracting.

Stability of a trajectory segment: Multiply (N.9) by r to obtain 1
2 ṙ

2 = r2− r4 ,
set r2 = 1/u, separate variables du/(1− u) = 2 dt , and integrate: ln(1− u)− ln(1−
u0) = −2t . Hence the r(r0, t) trajectory is

r(t)−2 = 1 + (r−2
0 − 1)e−2t . (N.12)
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The [1×1] fundamental matrix

J(r0, t) =
∂r(t)
∂r0

∣∣∣∣
r0=r(0)

. (N.13)

satisfies (4.33)

d

dt
J(r, t) = A(r)J(r, t) = (1− 3r(t)2)J(r, t) , J(r0, 0) = 1 .

This too can be solved by separating variables d(lnJ(r, t)) = dt − 3r(t)2dt , substi-
tuting (N.12) and integrating. The stability of any finite trajectory segment is:

J(r0, t) = (r20 + (1 − r20)e−2t)−3/2e−2t . (N.14)

On the r = 1 limit cycle this agrees with the limit cycle multiplier Λr(1, t) = e−2t,
and with the radial part of the equilibrium instability Λr(r0, t) = et for r0 � 1.

P. Cvitanović

Solution 8.4: The other example of a limit cycle with analytic stability

exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.

Solution 8.5: Yet another example of a limit cycle with analytic stability

exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.

Chapter 9

Solution 9.1: Integrating over Dirac delta functions. (a) Whenever h(x)
crosses 0 with a nonzero velocity (det ∂xh(x) 	= 0), the delta function contributes
to the integral. Let x0 ∈ h−1(0). Consider a small neighborhood V0 of x0 so that
h : V0 → V0 is a one-to-one map, with the inverse function x = x(h). By changing
variable from x to h, we have

∫
V0

dx δ(h(x)) =
∫

h(V0)

dh |det ∂hx| δ(h) =
∫

h(V0)

dh
1

|det ∂xh|
δ(h)

=
1

|det ∂xh|h=0
.

Here, the absolute value | · | is taken because delta function is always positive and we
keep the orientation of the volume when the change of variables is made. Therefore
all the contributions from each point in h−1(0) add up to the integral

∫
Rd

dx δ(h(x)) = Σx∈h−1(0)
1

|det ∂xh|
.

Notice that if det ∂xh = 0, then the delta function integral is not well defined.
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