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Chapter 9

Transporting densities

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

W. Shakespeare: The Winter’s Tale

what does ”anon it
lives” refer to?

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 5 and 6 we learned how to track an individual trajectory,
and saw that such a trajectory can be very complicated. In chapter 4 we
studied a small neighborhood of a trajectory and learned that such neigh-
borhood can grow exponentially with time, making the concept of tracking
an individual trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly
convoluted, the density of these points might evolve in a manner that is
relatively smooth. The evolution of the density of representative points is
for this reason (and other that will emerge in due course) of great interest.
So are the behaviors of other properties carried by the evolving swarm of
representative points.

We shall now show that the global evolution of the density of represen-
tative points is conveniently formulated in terms of evolution operators.

9.1 Measures

Do I then measure, O my God, and know not what I
measure?

St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system
is that of measure, which we denote by dµ(x) = ρ(x)dx. An intuitive way
to define and construct a physically meaningful measure is by a process
of coarse-graining. Consider a sequence 1, 2, ..., n, ... of increasingly
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Figure 9.1: (a) First level of partitioning: A coarse partition of M into regions M0,
M1, and M2. (b) n = 2 level of partitioning: A refinement of the above partition,
with each region Mi subdivided into Mi0, Mi1, and Mi2.

refined partitions of phase space, figure 9.1, into regions Mi defined by the
characteristic function

χi(x) =

{

1 if x ∈ Mi ,
0 otherwise .

(9.1)

A coarse-grained measure is obtained by assigning the “mass”, or the frac-
tion of trajectories contained in the ith region Mi ⊂ M at the nth level of
partitioning of the phase space:

∆µi =

∫

M
dµ(x)χi(x) =

∫

Mi

dµ(x) =

∫

Mi

dx ρ(x) . (9.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in
phase space at time t. This density can be (and in chaotic dynamics, often
is) an arbitrarily ugly function, and it may display remarkable singularities;
for instance, there may exist directions along which the measure is singular
with respect to the Lebesgue measure. As our intent is to sprinkle phaseAH, MAP: define

Lebesgue measure space with a finite number of initial points (repeat an experiment a finite
number of times), we shall assume that the measure can be normalized

(n)
∑

i

∆µi = 1 , (9.3)

where the sum is over subregions i at the nth level of partitioning. The
infinitesimal measure dxρ(x) can be thought of as an infinitely refined par-
tition limit of ∆µi = |Mi|ρ(xi) , xi ∈ Mi, with normalization

∫

M
dx ρ(x) = 1 . (9.4)

So far, any arbitrary sequence of partitions will do. What are intelligent
ways of partitioning phase space? We postpone the answer to chapter 11,
after we have developed some intuition about how the dynamics transports
densities.

☞ chapter 11
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Jacobian
Dirac delta function
Dirac delta function
delta function!Dirac

9.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with
time. Consider a swarm of representative points making up the measure
contained in a region Mi at time t = 0. As the flow evolves, this region
is carried into f t(Mi), as in figure 2.1(b). No trajectory is created or
destroyed, so the conservation of representative points requires that

∫

ft(Mi)
dx ρ(x, t) =

∫

Mi

dx0 ρ(x0, 0) .

If the flow is invertible and the transformation x0 = f−t(x) is single-valued,
we can transform the integration variable in the expression on the left to

∫

Mi

dx0 ρ(f t(x0), t)
∣

∣det M t(x0)
∣

∣ .

We conclude that the density changes with time as the inverse of the Jaco-
bian (4.36)

ρ(x, t) =
ρ(x0, 0)

|detM t(x0)|
, x = f t(x0) , (9.5)

which makes sense: the density varies inversely to the infinitesimal volume
occupied by the trajectories of the flow.

The manner in which a flow transports densities may be recast into the
language of operators, by writing

ρ(x, t) = Ltρ(x) =

∫

M
dx0 δ

(

x − f t(x0)
)

ρ(x0, 0) . (9.6)

Let us check this formula. Integrating Dirac delta functions is easy:
∫

M dx δ(x) =
1 if 0 ∈ M, zero otherwise. The integral over a one-dimensional Dirac delta
function picks up the Jacobian of its argument evaluated at all of its zeros:

∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1

|h′(x)|
, (9.7)

and in d dimensions the denominator is replaced by ✎ 9.1
page 146

∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1
∣

∣

∣
det ∂h(x)

∂x

∣

∣

∣

. (9.8)
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Perron-
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operator!Perron-
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Figure 9.2: A piecewise-linear skew “Ulam
tent” map (9.11) (Λ0 = 4/3, Λ1 = −4). 0.2 0.4 0.6 0.8 1
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use my transparencies
here.

Now you can check that (9.6) is just a rewrite of (9.5): ✎ 9.2
page 146

Ltρ(x) =
∑

x0=f−t(x)

ρ(x0)

|f t′(x0)|
(1-dimensional)

=
∑

x0=f−t(x)

ρ(x0)

|detM t(x0)|
(d-dimensional) . (9.9)

For a deterministic, invertible flow x has only one preimage x0; allowing
for multiple preimages also takes account of noninvertible mappings such
as the “stretch & fold” maps of the interval, to be discussed briefly in the
next example, and in more detail in sect. 11.3.1.

We shall refer to the kernel of (9.6) as the Perron-Frobenius operator:

✎ 9.3
page 146

Lt(x, y) = δ
(

x − f t(y)
)

. (9.10)
remember to link with
(10.24)

☞ example 16.7 If you do not like the word “kernel” you might prefer to think of Lt(x, y)
as a matrix with indices x, y. The Perron-Frobenius operator assembles

☞ remark 15.4
the density ρ(x, t) at time t by going back in time to the density ρ(x0, 0)
at time t = 0.move this remark to ?:

(for nomenclature, see
remark 15.4).

in depth:

appendix F, p. 901

Example 9.1 Perron-Frobenius operator for a piecewise-linear map: Assume
the expanding 1-d map f(x) of figure 9.2, a piecewise-linear 2–branch map with slopes
Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :✎ 9.7

page 148
f(x) =

{

f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1
(1 − x) , x ∈ M1 = (1/Λ0, 1] .

(9.11)

Both f(M0) and f(M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =

{

ρ0 if x ∈ M0

ρ1 if x ∈ M1

. (9.12)
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transfer!matrix
stationary!state
measure!invariant
invariant!measure

As can be easily checked using (9.9), the Perron-Frobenius operator acts on this piece-
wise constant function as a [2×2] “transfer” matrix with matrix elements ✎ 9.1

page 146

✎ 9.5
page 147

introduce, explain
“transfer” matrix

(

ρ0

ρ1

)

→ Lρ =

( 1

|Λ0|
1

|Λ1|
1

|Λ0|
1

|Λ1|

) (

ρ0

ρ1

)

, (9.13)

stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| =
1, with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are,
respectively, the fractions of phase space taken up by the |M0|, |M1| intervals. This
simple explicit matrix representation of the Perron-Frobenius operator is a consequence
of the piecewise linearity of f , and the restriction of the densities ρ to the space of
piecewise constant functions. The example gives a flavor of the enterprise upon which
we are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius operator.
(Continued in example 10.1.)

To a student with a practical bent the example suggests a strategy for
constructing evolution operators for smooth maps, as limits of partitions
of phase space into regions Mi, with a piecewise-linear approximations fi

to the dynamics in each region, but that would be too naive; much of
the physically interesting spectrum would be missed. As we shall see, the

☞ chapter 16
choice of function space for ρ is crucial, and the physically motivated choice
is a space of smooth functions, rather than the space of piecewise constant
functions.

9.3 Invariant measures

A stationary or invariant density is a density left unchanged by the flow rethink - where did the
Jacobian in (9.5) go?

ρ(x, t) = ρ(x, 0) = ρ(x) . (9.14)

Conversely, if such a density exists, the transformation f t(x) is said to
be measure-preserving. As we are given deterministic dynamics and our
goal is the computation of asymptotic averages of observables, our task
is to identify interesting invariant measures for a given f t(x). Invariant
measures remain unaffected by dynamics, so they are fixed points (in the
infinite-dimensional function space of ρ densities) of the Perron-Frobenius
operator (9.10), with the unit eigenvalue: repeller measures?

✎ 9.3
page 146

Ltρ(x) =

∫

M
dy δ(x − f t(y))ρ(y) = ρ(x). (9.15)

⇓PRELIMINARY

For the piecewise linear map example worked out above, in example 10.1,
we have already constructed explicitly such eigenfunction, ρ(y) = const.,
with eigenvalue 1. In general, depending on the choice of f t(x) and the resurect after replac-

ing with the no-escape
example the above.

⇑PRELIMINARY

function space for ρ(x), there may be no, one, or many solutions of the

ChaosBook.org/version11.9, Dec 4 2006 measure - 15aug2006
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equilibrium!point
confession!C.N.

Yang
Yang, C.N.
natural measure
measure!natural
visitation frequency

eigenfunction condition (9.15). For instance, a singular measure dµ(x) =
δ(x−xq)dx concentrated on an equilibrium point xq = f t(xq), or any linear
combination of such measures, each concentrated on a different equilibrium
point, is stationary. There are thus infinitely many stationary measures
that can be constructed. Almost all of them are unnatural in the sense
that the slightest perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so it makes sense to concentrate on measures which
are limits of transformations experienced by an initial smooth distribution
ρ(x) under the action of f , rather than as a limit computed from a single
trajectory,

ρ0(x) = lim
t→∞

∫

M
dy δ(x − f t(y))ρ(y, 0) ,

∫

M
dy ρ(y, 0) = 1 . (9.16)

Intuitively, the “natural” measure (or measures) should be the least sensi-
tive to facts of life, such as noise (no matter how weak).connect to chapter 35:

make the robustness
under external noise
more convincing here

9.3.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory
gives us useful insight into the foundation of statis-
tical mechanics?
Yang: I don’t think so.

Kerson Huang, C.N. Yang interview

add to refsMea-
sure.tex

The natural or equilibrium measure can be defined as the limit

ρx0
(y) =







limt→∞
1
t

∫ t

0 dτ δ(y − f τ (x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(

y − fk(x0)
)

maps ,

(9.17)

✎ 9.8
page 148

✎ 9.9
page 148

where x0 is a generic inital point. 1 Staring at an average over infinitely
many Dirac deltas is not a prospect we cherish. Generated by the action of
f , the natural measure satisfies the stationarity condition (9.15) and is thus
invariant by construction. From a computational point of view, the natural
measure is the visitation frequency defined by coarse-graining, integrating
(9.17) over the Mi region

∆µi = lim
t→∞

ti
t

, (9.18)

where ti is the accumulated time that a trajectory of total duration t spends
in the Mi region, with the initial point x0 picked from some smooth density
ρ(x).

1Driebe: emphasize generic, not periodic: use normal (Borel definition of irrationals)
vs. non-normal. Explained in the green book edited by Series
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average!space
space!average
functional
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average!time
ergodic!theory
ergodic!average
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theorem
mixing

Let a = a(x) be any observable. In the mathematical literature a(x)
is a function belonging to some function space, for instance the space of
integrable functions L1, that associates to each point in phase space a
number or a set of numbers. In physical applications the observable a(x)
is necessarily a smooth function. The observable reports on some property
of the dynamical system. Several examples will be given in sect. 10.1. put pointer, refer to

the example there

The space average of the observable a with respect to a measure ρ is
given by the d-dimensional integral over the phase space M:

〈a〉ρ =
1

|ρM|

∫

M
dx ρ(x)a(x)

|ρM| =

∫

M
dx ρ(x) = mass in M . (9.19)

For now we assume that the phase space M has a finite dimension and a
finite volume. By definition, 〈a〉ρ is a function(al) of ρ.

Inserting the right-hand-side of (9.17) into (9.19), we see that the nat-
ural measure corresponds to a time average of the observable a along a
trajectory of the initial point x0,

ax0 = lim
t→∞

1

t

∫ t

0
dτ a(f τ (x0)) . (9.20)

☞ appendix A

Analysis of the above asymptotic time limit is the central problem of
ergodic theory. The Birkhoff ergodic theorem asserts that if a natural
measure ρ exists, the limit a(x0) for the time average (9.20) exists for all
initial x0. As we shall not rely on this result in what follows we forgo
a proof here. Furthermore, if the dynamical system is ergodic, the time
average over almost any trajectory tends to the space average definition of ergodic

(Webster?)

lim
t→∞

1

t

∫ t

0
dτ a(f τ (x0)) = 〈a〉 (9.21)

for “almost all” initial x0. By “almost all” we mean that the time average
is independent of the initial point apart from a set of ρ-measure zero. explain we drop suffix

ρ if ρ is the natural
measure

For future reference, we note a further property that is stronger than er-
godicity: if the space average of a product of any two variables decorrelates
with time, explain mixing

lim
t→∞

〈

a(x)b(f t(x))
〉

= 〈a〉 〈b〉 , (9.22)

☞ sect. 19.4

the dynamical system is said to be mixing.

ChaosBook.org/version11.9, Dec 4 2006 measure - 15aug2006
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Figure 9.3: Natural measure (9.18) for the
Hénon map (3.15) strange attractor at param-
eter values (a, b) = (1.4, 0.3). See figure 3.5
for a sketch of the attractor without the natural
measure binning. (Courtesy of J.-P. Eckmann) -0.4
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Example 9.2 The Hénon attractor natural measure: A numerical calculation
of the natural measure (9.18) for the Hénon attractor (3.15) is given by the histogram
in figure 9.3. The phase space is partitioned into many equal-size areas Mi, and the
coarse grained measure (9.18) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area Mi. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

If an invariant measure is quite singular (for instance a Dirac δ concen-
trated on a fixed point or a cycle), its existence is most likely of limited
physical import. (See however discussion of orbital measures, sect. ??).

⇓PRELIMINARY
No smooth inital density will converge to this measure if the dynamics is

⇑PRELIMINARY unstable. In practice the average (9.17) is problematic and often hard to
control, as generic dynamical systems are neither uniformly hyperbolic nor
structurally stable: it is not known whether even the simplest model of a
strange attractor, the Hénon attractor, is a strange attractor or merely a
long stable cycle.✎ 10.1

page 169

Genuflect here to
refs. [12.33, 12.34,
12.35]

9.3.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we
cannot do better than to measure it averaged over some region Mi; the
coarse-graining is not an approximation but a physical necessity. One is
free to think of a measure as a probability density, as long as one keeps in
mind the distinction between deterministic and stochastic flows. In deter-
ministic evolution the evolution kernels are not probabilistic; the density of
trajectories is transported deterministically. What this distinction means

☞ chapter 15
will became apparent later: for deterministic flows our trace and determi-
nant formulas will be exact, while for quantum and stochastic flows they
will only be the leading saddlepoint (stationary phase, steepest descent)
approximations.refer to noise.tex as

well

☞ chapter 34
Clearly, while deceptively easy to define, measures spell trouble. The

good news is that if you hang on, you will never need to compute them, at
least not in this book. How so? The evolution operators to which we next
turn, and the trace and determinant formulas to which they will lead us,
will assign the correct weights to desired averages without recourse to any
explicit computation of the coarse-grained measure ∆ρi.
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9.4 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an in-
finitesimal step δτ , by expanding the action of Lδτ to linear order in δτ :

Lδτρ(y) =

∫

M
dx δ

(

y − f δτ (x)
)

ρ(x)

=

∫

M
dx δ(y − x − δτv(x)) ρ(x)

=
ρ(y − δτv(y))

∣

∣

∣
det

(

1 + δτ ∂v(y)
∂x

)∣

∣

∣

=
ρ(y) − δτ

∑d
i=1 vi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ ) = ρ(x, 0) − δτ
d

∑

i=1

∂

∂xi
(vi(x)ρ(x, 0)) . (9.23)

Here we have used the infinitesimal form of the flow (2.5), the Dirac delta ✎ 4.1
page 78

Jacobian (9.9), and the ln det = tr ln relation. Moving ρ(y, 0) to the left
hand side and dividing by δτ , we discover that the rate of the deformation of
ρ under the infinitesimal action of the Perron-Frobenius operator is nothing
but the continuity equation for the density:

∂tρ + ∂ · (ρv) = 0 . (9.24)

The family of Perron-Frobenius operators operators
{

Lt
}

t∈R+
forms a semi-

group parametrized by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

From (9.23), time evolution by an infinitesimal step δτ is generated by

Aρ(x) = + lim
δτ→0+

1

δτ

(

Lδτ − I
)

ρ(x) = −∂i(vi(x)ρ(x)) . (9.25)

We shall refer to

A = −∂ · v +

d
∑

i

vi(x)∂i (9.26)

as the time evolution (semigroup) generator. If the flow is finite-dimensional looks like Hamil-
tonian, but it is
notand invertible, A is a generator of a full-fledged group. The left hand side
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operator!semigroup!bounded
semigroup!operator
Laplace!transform
resolvent!operator
operator!resolvent

of (9.25) is the definition of time derivative, so the evolution equation for
ρ(x) is

(

∂

∂t
−A

)

ρ(x) = 0 . (9.27)

☞ appendix

The finite time Perron-Frobenius operator (9.10) can be formally ex-
pressed by exponentiating the time evolution generator A as

Lt = etA . (9.28)

⇓PRELIMINARY

✎ ??
page ??

⇑PRELIMINARY

The generator A is reminiscent of the generator of translations. Indeed, for
a constant velocity field dynamical evolution is nothing but a translation
by (time× velocity):

✎ 9.10
page 148

e−tv ∂

∂x a(x) = a(x − tv) . (9.29)

As we will not need to implement a computational formula for general etA

in what follows, we relegate making sense of such operators to appendix F.2.

☞ appendix F.2

9.4.1 Resolvent of L

Here we limit ourselves to a brief remark about the notion of the “spectrum”
of a linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it
is reasonable to suppose that there exist constants M > 0, β ≥ 0 such
that ||Lt|| ≤ Metβ for all t ≥ 0. What does that mean? The operator
norm is defined in the same spirit in which one defines matrix norms (see
appendix N.2): We are assuming that no value of Ltρ(x) grows faster than
exponentially for any choice of function ρ(x), so that the fastest possible
growth can be bounded by etβ , a reasonable expectation in the light of the
simplest example studied so far, the exact escape rate (10.20). If that is

☞ appendix N.2
so, multiplying Lt by e−tβ we construct a new operator e−tβLt = et(A−β)

which decays exponentially for large t, ||et(A−β)|| ≤ M . We say that e−tβLt

is an element of a bounded semigroup with generator A − βI. Given this
bound, it follows by the Laplace transformEAS: need to define

the norm of this oper-
ator

∫ ∞

0
dt e−stLt =

1

s −A
, Re s > β , (9.30)

A sign wrong here

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to
☞ sect. N.2

cause separation into constituents)
maybe also as Fourier
transform of (9.27), a
“Green’s” function measure - 15aug2006 ChaosBook.org/version11.9, Dec 4 2006
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Poisson!bracket
∣

∣

∣

∣

∣

∣

∣

∣

1

s −A

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ ∞

0
dt e−stMetβ =

M

s − β
.

If one is interested in the spectrum of L, as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for
continuous time flows, the Laplace transform is the tool that brings down
the generator in (9.28) into the resolvent form (9.30) and enables us to
study its spectrum.

in depth:

appendix F.2, p. 903

9.5 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow
defined by the Hamilton’s equations of motion (5.1). A reader versed in
quantum mechanics will have observed by now that with replacement A →
− i

~
Ĥ , where Ĥ is the quantum Hamiltonian operator, (9.27) looks rather

like the time dependent Schrödinger equation, so this is probably the right
moment to figure out what all this means in the case of Hamiltonian flows.

The Hamilton’s evolution equations (5.1) for any time-independent quan-
tity Q = Q(q, p) are given by

dQ

dt
=

∂Q

∂qi

dqi

dt
+

∂Q

∂pi

dpi

dt
=

∂H

∂pi

∂Q

∂qi
−

∂Q

∂pi

∂H

∂qi
. (9.31)

As equations with this structure arise frequently for symplectic flows, it is
convenient to introduce a notation for them, the Poisson bracket

{A,B} =
∂A

∂pi

∂B

∂qi
−

∂A

∂qi

∂B

∂pi
. (9.32)

Gaspard has {A, B}
defined the other way
around; use {, }In terms of Poisson brackets the time evolution equation (9.31) takes the

compact form

dQ

dt
= {H,Q} . (9.33)

The full phase space flow velocity is ẋ = (q̇, ṗ), where the dot signifies
time derivative for fixed initial point.

The discussion of sect. 9.4 applies to any deterministic flow. If the
density itself is a material invariant, combining (??) and (9.24) we conclude

⇓PRIVATE

⇑PRIVATE
that ∂ivi = 0 and detM t(x0) = 1. An example of such incompressible flow
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is the Hamiltonian flow of sect. 5.2. For incompressible flows the continuity
equation (9.24) becomes a statement of conservation of the phase space
volume (see sect. 5.2), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (9.34)

Hamilton’s equations (5.1) imply that the flow is incompressible, ∂ivi =
0, so for Hamiltonian flows the equation for ρ reduces to the continuity

equation for the phase-space density:
☞ appendix F

confused - conflicts
with (9.24) and (9.34) ∂tρ + ∂i(ρvi) = 0 . (9.35)

Consider the evolution of the phase space density ρ of an ensemble of
noninteracting particles; the particles are conserved, soreference is Goldstein

d

dt
ρ(q, p, t) =

(

∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)

ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (5.1) we obtain the Liouville equation, a
special case of (9.27):recheck sign!

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = {H, ρ(q, p, t)} , (9.36)

where { , } is the Poisson bracket (9.32). The generator of the flow (9.26)rescue the Pois-
son brackets from
appendix E is now the generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=

∂H

∂pi

∂

∂qi
−

∂H

∂qi

∂

∂pi
. (9.37)

For separable Hamiltonians of form H = p2/2m + V (q), the equations of
motion arephotoshop

q̇i =
pi

m
, ṗi = −

∂V (q)

∂qi
. (9.38)

and the action of the generatormove to appendix F

A = −
pi

m

∂

∂qi
+ ∂iV (q)

∂

∂pi
. (9.39)

✎ 9.11
page 149 can be interpreted as a translation (9.29) in configuration space, followed

by acceleration by force ∂V (q) in the momentum space.Dorfman notation is
L = −A
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Liouville!operator
operator!Liouville
Poisson!bracket

This special case of the time evolution generator (9.26) for the case of
symplectic flows is called the Liouville operator. You might have encoun-
tered it in statistical mechanics, while discussing what ergodicity means
for 1023 hard balls. Here its action will be very tangible; we shall apply
the evolution operator to systems as small as 1 or 2 hard balls and to our
surprise learn that that suffices to alredy get a bit of a grip on foundations
of the classical nonequilibrium statistical mechanics.

in depth:

sect. F.2, p. 903

Commentary

Remark 9.1 Ergodic theory: An overview of ergodic theory is outside the scope

of this book: the interested reader may find it useful to consult ref. [9.1]. The

existence of time average (9.20) is the basic result of ergodic theory, known as the

Birkhoff theorem, see for example refs. [9.1, 1.20], or the statement of theorem

7.3.1 in ref. [9.8]. The natural measure (9.18) (more carefully defined than in the

above sketch) is often referred to as the SRB or Sinai-Ruelle-Bowen measure [1.24,

1.22, 1.26].

Remark 9.2 Time evolution as a Lie group: Time evolution of sect. 9.4 is an

example of a 1-parameter Lie group. Consult, for example, chapter 2. of ref. [9.9]

for a clear and pedagogical introduction to Lie groups of transformations. For a

discussion of the bounded semigroups of page 140 see, for example, Marsden and

Hughes [9.2].

Remark 9.3 The sign convention of the Poisson bracket: The Poisson bracket is

antisymmetric in its arguments and there is a freedom to define it with either sign

convention. When such freedom exists, it is certain that both conventions are in

use and this is no exception. In some texts [1.8, 9.3] you will see the right hand

side of (9.32) defined as {B, A} so that (9.33) is dQ

dt
= {Q, H}. Other equally

reputable texts [31.2] employ the convention used here. Landau and Lifshitz [9.4]

denote a Poisson bracket by [A, B], notation that we reserve here for the quantum-

mechanical commutator. As long as one is consistent, there should be no problem.

Résumé

In physically realistic settings the initial state of a system can be specified
only to a finite precision. If the dynamics is chaotic, it is not possible to
calculate accurately the long time trajectory of a given initial point. De-
pending on the desired precision, and given a deterministic law of evolution,
the state of the system can then be tracked for a finite time.
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The study of long-time dynamics thus requires trading in the evolution
of a single phase space point for the evolution of a measure, or the density

of representative points in phase space, acted upon by an evolution oper-

ator. Essentially this means trading in nonlinear dynamical equations on
finite dimensional spaces x = (x1, x2 · · · xd) for linear equations on infinite
dimensional vector spaces of density functions ρ(x). The most physical
of stationary measures is the natural measure, a measure robust under
perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the no-
tion of an individual deterministic trajectory loses meaning, is much shorter
than the observation time, the “sharp” observables are those dual to time,
the eigenvalues of evolution operators. This is very much the same situ-
ation as in quantum mechanics; as atomic time scales are so short, what
is measured is the energy, the quantum-mechanical observable dual to the
time. For long times the dynamics is described in terms of stationary
measures, i.e., fixed points of certain evolution operators. Both in classi-
cal and quantum mechanics one has a choice of implementing dynamical
evolution on densities (“Schrödinger picture”, sect. 9.4) or on observables
(“Heisenberg picture”, sect. 10.2 and chapter 14). By “Schrödinger picture”

⇓PRELIMINARY
we mean computer eigenvalues...., and then expectation values by extreme
sandwiching the observables between the eigen.....

⇑PRELIMINARY

In what follows we shall find the second formulation more convenient,
but the alternative is worth keeping in mind when posing and solving in-
variant density problems. However, as classical evolution operators are not
unitary, their eigenstates can be quite singular and difficult to work with.
In what follows we shall learn how to avoid dealing with these eigenstates
altogether. As a matter of fact, what follows will be a labor of radical
deconstruction; after having argued so strenuously here that only smooth
measures are “natural”, we shall merrily proceed to erect the whole edifice
of our theory on periodic orbits, i.e., objects that are δ-functions in phase
space. The trick is that each comes with an interval, its neighborhood –
cycle points only serve to pin these intervals, just as the millimeter marks
on a measuring rod partition continuum into intervals.
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