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2.19 Differentiate (x —y)* = (f(x) — f(y))? after  to obtain x —y = (f(x) — f(y))-
a(x) with a(x) = 0f (x)/0x. Differentiate again after g to obtain —1 = —a(y) " -a(x).
This means that a(x) ~' = a(y) . The left hand side depends only on 2 and the right
hand side only on y which implies that both sides are independent of « and y, i.e. the
matrix a is a constant. Integrating 9 f(x)/0x = a one gets f(x) =a-x + b.

2.20 Let a.(¢) be the matrix of the simple rotation (2-40) through an angle ¢ around
the z-axis. Then the three Euler angles ¢, 6 and 1 determine any rotation matrix as a

product a.(¢) - ay(0) -a. ().

3 Gravity

3.2 The centripetal acceleration in a circular orbit must equal the force of gravity,
v?/r = GM/r? leading to v = \/GM/r = /—®. At ground level the velocity becomes
v = vesc/ﬂ = 7.9 km/s where vesc = 11.2 km/s is the escape velocity.

3.3 Earth’s true rotation period T' = Ty x 364/365 is a bit shorter than Ty = 24 hours
because of the orbital motion which adds one full revolution in one year. Taking v = Qr
where Q = 27 /T we find from the equality of centripetal acceleration and gravity that

"2 = g 3-Al
=905 - (3-A1)
which solved for r/a yields
1/3
2 - (%) ~ 6.613 . (3-A2)

The orbit height is h = r — a = 5.613a ~ 35,800 km.

3.4 At the height z above the ground the force on a small piece dz of the line is

07 = (s a4 20 ) pads (3-43)

where €2 is the angular velocity in the stationary orbit and the second term represents
the centrifugal force. Since this only vanishes for z = h, the total force is maximal at
the satellite. Integrating the force from 0 to h, we find the maximal force

F= /Oh dF(2) = pAh (fgoa 4o (a + %h)) . (3-Ad)

The absolute value of the tension-to-density ratio becomes,

o a 2 1 72,2
—=h - Q —h ~ 4.8 x 10 3-A5

P (goa+h (a+2 )) X m°/s ( )
The tensile strength a Beryllium-Copper alloy of density p = 8230 kg/m3 can go as
high as ¢ ~ 1.4 GPa, leading to o/p ~ 1.7 x 10°> m?/s? a factor nearly 300 below the
required value.
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ANSWERS TO PROBLEMS

3.7 A small volume is invariant under a rotation dv’ = dv and so is the amount of
mass contained in it, dm’ = dm. By the definition (3-1) we have dm’ = p'(z')dv’ =
dm = p(x)dv and from that p'(z') = p(x).

3.8 The force on a small volume transforms according to dF’ = a - dF whereas the
mas element is invariant dm’ = dm. By the definition (3-5) we have dF' = g'(z') dm’ =
a-dF =a- g(x)dm and from this g’'(z’) =a- g(x).

3.10 Cut out a small sphere |’ — | < a around the point . Let a be so small that
p(x’) does not vary appreciably within this sphere. Then we get the contribution to
gravity from the small sphere

/ /
Ag(x) = —G/ P p(x") dv' ~ —Gp(a:)/ TTT =0

|2’ —=|<a |$7$ z' —=z|<a |wiml|3
The last integral vanishes because of the spherical symmetry (it is a vector with no

direction to point in).

3.5
a) Minimal kinetic energy: 1vg,. &~ 63 (km/s)* = 63 x 10° J/kg.
b) Melting, heating and evaporating ice: ~ 3 x 10° J/kg.

3.6 Energy conservation: 17* + ®(r) = ®(a). Use (3-31).

a) vo=—"|._,=a %ﬂ'poG = ./goa =T7.9 km s~ L.

dr dr ma
b) to = [* = Jo = 1267
% V/2(®(a) — 3(r)) 0 47p0G(a? — 12) 2vg
3.11 From (3-17) we get
rp1 r<a
3 3
ai ai
gr) = —37G @ T (’”* *) pp @<r<a, (3-A6)
aipr + ((:Z — a?)p2 v
and from (3-28)s
(3a3 —1%)p1 + 3(a® — al)p2 r<a
3 3
O(r) = —%ﬂ'G 2%/’1 + (3&2 —r? - 2%) P2 a1 <r<a . (3-A7)
3 3_ 3
2%‘01_’_2& Talpg r>a

3.12 Using the two-layer model it follows from |g(a1)| > |g(a)|, that ai1p1 > (a$p1 +
(a® — a3)p2)/a® which may be rewritten in the form of the inequality (3-43). For the
Earth the left hand side becomes 1.42 and the right hand side 1.18, so the inequality is
fulfilled.



3. GRAVITY

661

3.13
A A r2te
E—) _ e g —4 _ g2t ).
2) 9(r) Cral 20 7TGz+a<3+a . )

b) a> —3.
c) 3<a<-L

3.14 Use eq. (3-17). Setting u = r/a one gets

M(r) = / p(s)47rs2 ds = 47rp0/ e /%2 ds = 47rp0a3 (2 —(2+2u+ u2)67“)
0 0

Similarly, using (3-30) one finds
/ sp(s)ds = pO/ se” " ds = poa’(1 + u)e ™

and from this
_ 47TGp0a3

T

P = 2(1—e")—ue ™)

3.15 Multiplying (3-13) by e, = «/r and using (3-16) one gets

z-(x—o
o) =~ /H piwoo ‘;} 2 m,|3) pla’) dv’

Introducing s = |¢'| and the angle § between x and @', so that dv’ = 27 sin 0dfs?ds,
this becomes

r —scosf

a 1
g(r) = —271-G/ p(s)s2ds/ dcos0
0

-1 (r2 4 s2 — 2rscos 6’)%

Integrating over u = cos one obtains

! r— su a [ 1
1 (r24 82— 2rsu)? or J 2+ 52 — 2rsu

. {mr A r—s|—(r+s)
u=-—1

or rs or TS
L r>s
o |r 2
=—2— = =0(r—s)
2
or )1 res T
s

which leads to the desired result (3-17).



