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The second term vanishes because of the lack of correlation.
(b) The average of the second term is*
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18 Viscosity

18.1 (a) In a unit volume, the ideal gas law tells us that the number of moles is
p/RT , and since there is NA molecules in a mole, the result follows. For T = 300 K
and p = 1 bar, we get n ≈ 2.4× 1025 m−3.
(b) A single molecule of diameter d will collide with a molecule of the same size if it
gets inside a circle of radius d centered at the target molecule. In a cylinder with radius
d and length equal to the mean-free-path λ, there must be exactly one molecule, or
nλπd2 = 1, where n is the density of molecules. For air this becomes λ ≈ 147 nm.
(c) For air the speed of sound is c ≈ 330 m/s and the viscosity estimate becomes
η ≈ ρλ2/τ ≈ ρλc ≈ 5× 10−5 Pas, which is a factor 2 too large.

18.2 In an isentropic gas we have p ∼ ργ and p ∼ ρT , so that ρ ∼ T 1/(γ−1) and
ν ∼ T 1/2−1/(γ−1). For monatomic gases γ = 5/3 and ν ∼ T−1, for diatomic γ = 7/5
and ν ∼ T−2, and for multiatomic γ = 4/3 and ν ∼ T−5/2.

18.3 One finds d ≈ 3 µm and t0 ≈ 11 s. The layer seems a bit thin compared to, for
example curling (example 18.2.1). The tire pattern probably influences the “ice grip”
considerably.

18.4 (a) The total flux is
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From (18-5) we get by integrating over y
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because ∂vx/∂y vanishes at infinity.
(b) The total momentum per unit of length is

P =
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ρ0vx(y, t) dy = ρ0Q (18-A3)

and is constant because Q is.
(c) The kinetic energy per unit of length is
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In the Gaussian case this becomes
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