18.5 One verifies explicitly that the expression satisfies the equation of motion (18-5). The constant in front is determined by requiring

$$
\int_{-\infty}^{\infty} v_{x}(y, t) d y=\int_{-\infty}^{\infty} v_{x}(y, 0) d y
$$

For $t \rightarrow 0$ the Gaussian becomes infinitely narrow (a δ-function) and thus $v_{x}(y, t) \rightarrow$ $v_{x}(y, 0)$. Finally, assuming that $v_{x}(y, 0)=0$ for $|y| \leq a$ one gets for $|y| \rightarrow \infty$ and $4 \nu t \gg a^{2}$

$$
\begin{equation*}
v_{x}(y, t) \approx \frac{1}{2 \sqrt{\pi \nu t}} \exp \left(-\frac{y^{2}}{4 \nu t}\right) \int_{-\infty}^{\infty} v_{x}\left(y^{\prime}, 0\right) d y^{\prime} \tag{18-A7}
\end{equation*}
$$

18.6 a) The average of $\left\langle n_{i} n_{j}\right\rangle$ over all directions of \boldsymbol{n} does not itself depend on any direction, so that it must be proportional to Kronecker's delta, $\left\langle n_{i} n_{j}\right\rangle=k \delta_{i j}$. The constant k is determined by taking the trace of both sides, $1=\left\langle\boldsymbol{n}^{2}\right\rangle=3 k$.
18.7 a) $L \approx 10 \mathrm{~km}, U \approx 1 \mathrm{~m} / \mathrm{s}, \operatorname{Re} \approx 10^{10}$. b) $L \approx 30 \mathrm{~m}, U \approx 30 \mathrm{~m} / \mathrm{s}, \operatorname{Re} \approx \times 10^{9}$. c) $L \approx 1000 \mathrm{~km}, U \approx 10 \mathrm{~m} / \mathrm{s}, \operatorname{Re} \approx 10^{12}$. d) $L \approx 500 \mathrm{~km}, U \approx 50 \mathrm{~m} / \mathrm{s}, \operatorname{Re} \approx 3 \times 10^{12}$. e) $L \approx 1 \mathrm{~km}, U \approx 100 \mathrm{~m} / \mathrm{s}, \operatorname{Re} \approx 10^{10}$

19 Plates and tubes

19.1 Use the general solution (19-7) and the no-slip conditions to get

$$
v_{x}=\frac{G}{2 \eta} y(d-y)+U \frac{y}{d}
$$

The maximum happens at $y=\frac{d}{2}+\frac{U \eta}{G d}$ and lies between the plates for $2 U \eta<G d^{2}$.
19.2 Let the pressure gradient be G along the x-direction and the relative plate velocity U along the z-direction. Assume that the field is of the form $\boldsymbol{v}=\left(v_{x}(y), 0, v_{z}(y)\right)$. Then the Navier-Stokes equations imply that p and v_{x} are as in the planar pressure driven case, whereas v_{z} is as in the velocity driven case.
19.3 If pressure were used to drive the planar sheet, there would have to be a linearly falling pressure along the open surface. But that is impossible because the open surface requires constant pressure.
19.8 First calculate the "tensor product" of the cylindrical gradient operator (C-6) with the velocity field,

$$
\boldsymbol{\nabla} \boldsymbol{v}=\left(\boldsymbol{e}_{r} \nabla_{r}+\boldsymbol{e}_{\phi} \nabla_{\phi}+\boldsymbol{e}_{z} \nabla_{z}\right) v_{z}(r) \boldsymbol{e}_{z}=\boldsymbol{e}_{r} \boldsymbol{e}_{z} \frac{d v_{z}}{d r}
$$

From this result we immediately recover that the divergence vanishes, $\boldsymbol{\nabla} \cdot \boldsymbol{v}=\operatorname{Tr}[\boldsymbol{\nabla} \boldsymbol{v}]=$ 0 , as well as the convective acceleration $\boldsymbol{v} \cdot(\boldsymbol{\nabla} \boldsymbol{v})=\mathbf{0}$. Dotting from the left with the
gradient we obtain the Laplacian

$$
\begin{aligned}
\boldsymbol{\nabla}^{2} \boldsymbol{v} & =\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \boldsymbol{v}=\left(\boldsymbol{e}_{r} \nabla_{r}+\boldsymbol{e}_{\phi} \nabla_{\phi}+\boldsymbol{e}_{z} \nabla_{z}\right) \cdot \boldsymbol{e}_{r} \boldsymbol{e}_{z} \frac{d v_{z}}{d r} \\
& =\boldsymbol{e}_{z} \frac{d^{2} v_{z}}{d r^{2}}+\boldsymbol{e}_{z} \frac{1}{r} \frac{d v_{z}}{d r}=\boldsymbol{e}_{z} \frac{1}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)
\end{aligned}
$$

19.9 The effective pressure gradient is $G=\rho_{0} g_{0}$ and the Reynolds number (19-24) becomes

$$
\begin{equation*}
\operatorname{Re}=\frac{g_{0} a^{3}}{4 \nu^{2}} \tag{19-A1}
\end{equation*}
$$

Solving for a we find

$$
\begin{equation*}
a=\left(\frac{4 \nu^{2}}{g_{0}} \operatorname{Re}\right)^{\frac{1}{3}} \approx 0.07 \mathrm{~mm} \times \operatorname{Re}^{\frac{1}{3}} \tag{19-A2}
\end{equation*}
$$

19.10 The simplest way is to recognize that the mass dimension (kg) contained in ρ_{0} and η can only be removed by forming the ratio $\nu=\eta / \rho_{0}$ of dimension $\mathrm{m}^{2} / \mathrm{s}$. Since Q has dimension of $\mathrm{m}^{3} / \mathrm{s}$, the time unit can only be removed by forming the ratio Q / ν which has dimension of m. Finally, dividing with a, we get the dimensionless number $Q / \nu a$ which is proportional to the Reynolds number.

19.13

$$
\begin{align*}
& \mathcal{D}=\pi a^{2} \Delta p=8 \pi \eta U L f(\mathrm{Re}) \tag{19-A3}\\
& P=\pi a^{2} \Delta p U=8 \pi \eta U^{2} L f(\mathrm{Re}) \tag{19-A4}
\end{align*}
$$

19.15 a) Use the no-slip boundary conditions on (19-20). b) The shear stress is

$$
\sigma_{z r}(r)=\eta \frac{d v_{z}}{d r}=-\frac{1}{2} G r+\frac{\eta A}{r}
$$

The total drag per unit of length on the two inner surfaces becomes $\sigma_{z r}(a) 2 \pi a-$ $\sigma_{z r}(b) 2 \pi b=\pi G\left(b^{2}-a^{2}\right)$.
19.17 a) The pressure at the entrance to the pipe is $p=p_{0}+\rho_{0} g_{0} h$ where p_{0} is the air pressure. The effective pressure gradient in the tube is $G=\rho_{0} g_{0}(1+h / L)$ and using the Hagen-Poiseuille law (19-22) we get

$$
Q=-\pi b^{2} \frac{d h}{d t}=\frac{\pi a^{4}}{8 \eta} \rho_{0} g_{0}\left(1+\frac{h}{L}\right)
$$

b) Solving this equation one gets

$$
L+h(t)=\left(L+h_{0}\right) e^{-t / \tau}, \quad \tau=\frac{8 b^{2} L \nu}{a^{4} g_{0}}
$$

Emptying time is $t_{0}=\tau \log \left(1+h_{0} / L\right)$. c) For $h_{0} \ll L$ we have $t_{0}=\tau h_{0} / L=8 b^{2} \nu / a^{4} g_{0}$. The reason is that there is no extra hydrostatic pressure from the water in the tank, but only the gradient due to gravity in the pipe.

