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20.7 The pressure inside the bubble at depth z < 0 equals the hydrostatic pressure
(disregarding the tiny effect of surface tension)

p = p0 − ρ0g0z . (20-A11)

where p0 is atmospheric pressure, ρ0 the density of the liquid, and α the liquid/gas
surface tension. The gas pressure is related to the density ρ by the ideal gas law p ∼ ρ,
and the density of the gas in a bubble of fixed mass is ρ ∼ R−3. Thus the pressure in
the bubble may be written

p = p0

�
R0

R

�3

, (20-A12)

where R0 is the radius of the bubble at the surface. Combining the two equations we
have obtained a relation between the depth below the surface and the radius of the
bubble

z = h0

 
1−

�
R0

R

�3
!

, h0 =
p0

ρ0g0
. (20-A13)

The equation of motion for a bubble of mass m is

mz̈ = −6πηRż −
�

4

3
πR3ρ0 −m

�
g0z (20-A14)

where the first term in the right hand side is the Stokes friction, and the second is the
force of buoyancy. Putting m = 0 we get

ż

z
= −2

9

ρ0g0

η
R2 (20-A15)

which together with the relation between depth and radius leads to an ordinary differ-
ential equation for z, which may easily be solved numerically.

21 Computational fluid dynamics

21.1 The last term is easily integrated, because

δ

Z
v ·rq dV =

Z
dV [δv ·rq + δv ·rδq] =

Z
dV δv ·rq

where we have used Gauss theorem in the last step, and dropped the surface terms.
The middle term is also easily integrated, because

δ

Z
dV

1

2

X
ij

(∇ivj)
2 =

Z
dV
X
ij

∇ivj∇iδvj =

Z
dV [−r2v] · δv

where we again have used Gauss theorem and discarded boundary terms.
The problem arises from the inertia term δv·(v·r)v =

P
ij δvivj∇jvi. Assume that

the integral is an expression of the form
P

ijkl aijklvivj∇kvl with suitable coefficients
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aijkl satisfying aijkl = ajikl. Varying the velocity and again dropping boundary terms
we get (suppressing the integral as well as the sums over repeated indices)

δ(aijklvivj∇kvl) = 2aijklδvivj∇kvl + aijklvivj∇kδvl

= 2aijklδvivj∇kvl − 2aijklδvlvj∇kvi

= 2(aijkl − aljki)δvivj∇kvl

In order for this to reproduce the desired result δvivj∇jvi we must have

aijkl − aljki =
1

2
δilδkj (21-A1)

but that is impossible because the left hand side is antisymmetric under interchange of
i and l.

21.2 Under a small variation δp(x) we find

δE =

Z
V

(rp ·rδp + sδp) dV =

Z
V

�−r2p + s
�
δp dV (21-A2)

where the surface terms in the integral have been dropped (assuming either p = 0 or
n ·rp = 0 on the surface). This vanishes only for arbitrary variations when the Poisson
equation is fulfilled. Choosing

δp = ε(r2p− s) (21-A3)

will make δE negative and make the field converge towards the desired solution.

22 Surface waves

22.1 The wave becomes

h = Re

Z ∞

−∞
a(k) exp[i(kx− ω(k)t + χ(k))] dk

=
1

∆k
√

π
Re

Z ∞

−∞
exp

�
i(k0x− ω0t + χ0) + i(k − k0)(x− cgt− x0)− (k − k0)

2

∆k2

�
dk

=
1√
π
Re

Z ∞

−∞
exp

�
i(k0x− ω0t + χ0) + iu∆k(x− cgt− x0)− u2� du

=
1√
π
Re

Z ∞

−∞
exp

"
i(k0x− ω0t + χ0)−

�
u− i

2
∆k(x− cgt− x0)

�2

− 1

4
∆k2(x− cgt− x0)

2

#
du

=
1√
π
Re

Z ∞

−∞
exp

�
i(k0x− ω0t + χ0)− u2 − 1

4
∆k2(x− cgt− x0)

2

�
du

= cos(k0x− ω0t + χ0) exp

�
−1

4
∆k2(x− cgt− x0)

2

�
.

In the second line we have substituted k = k0+u∆k and in the third we have rearranged
the resulting quadratic form. In the fourth we shift u → u + i

2
∆k(x− cgt− x0) and in

the fifth we use that
R∞
−∞ exp(−u2) du =

√
π.

The wave contains a single wave packet with a Gaussian envelope of width ∼ 1/∆k
with the center moving along x = x0 + cgt. The phase shift derivative x0 = −dχ/dk
determines the position of the center at t = 0.
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22.15

(a) For n = 0 it is trivial. For n 6= 0, the sum is geometric with progression factor
F = exp(2πin/N)

N−1X
m=0

exp
h
2πi

nm

N

i
=

N−1X
m=0

F m =
1− F N

1− F
= 0 (22-A1)

because F 6= 1 but F N = 1.

(b) Write the last expression as a double sum

hn =
1

N

N−1X
m=0

N−1X
k=0

hk exp

�
2πi

(k − n)m

N

�
(22-A2)

and do the m-sum first.

(c) Do the triple sumX
n

|hn|2 =
1

N

X
n,m,k

ĥmĥ×k exp

�
2πi

(k −m)n

N

�
(22-A3)

Do the sum over n first.

22.2 From the solution (22-35) we find

∂vz

∂t
+

1

ρ0
∇zp + g0 = −aω2

�
1 +

z

d

�
cos(kx− ωt) (22-A4)

which ought to vanish. Since the finite-depth solution does satisfy the field equations,
the problem must lie in the higher-order terms in kz we have dropped in the shallow-
water limit.

22.3 From the flat-bottom solution (22-32) we find the particle orbit equations

dx

dt
= vx = aω

cosh k(z + d)

sinh kd
sin(kx− ωt) ,

dz

dt
= vz = aω

sinh k(z + d)

sinh kd
cos(kx− ωt) .

Under the assumption of small amplitude ak ¿ 1, we have the approximative solution

x = x0 − a
cosh k(z0 + d)

sinh kd
sin(kx0 − ωt) (22-A5)

z = z0 + a
sinh k(z0 + d)

sinh kd
cos(kx0 − ωt) (22-A6)

This orbit is an ellipse centered at (x0, z0) with major axis a cosh k(z0 +d)/ sinh kd and
minor axis a sinh k(z0+d)/ sinh kd. For z0 → −d, the minor axis vanishes and the ellipse
degenerates into a horizontal line. In the deep-water limit, the ellipses degenerate into
circles of radius aekz0 .

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



22. SURFACE WAVES 705

22.5 Expanding to first order in h, we have

v̄x =
1

d

Z 0

−d

vx dz +
h

d
vx|z=0 −

h

d2

Z 0

−d

vx dz (22-A7)

and

〈v̄x〉 =
1

d
〈hvx〉z=0 −

1

d2

Z 0

−d

〈hvx〉 dz (22-A8)

Inserting (22-32) and integrating, the desired result is obtained. The expression vanishes
for d → 0.

22.6 The total amount of water in a shallow-water wave is M = ρ0λLd. The ratio
between the transported mass and the total mass is

〈Q〉 τ
ρ0Lλd

=
a2

2d2
(22-A9)

For a/d ≈ 0.1, it is only half a percent.

22.7 Since vx = ∇xΨ we haveZ h

−d

vx dz = ∇x

Z h

−d

Ψ dz −∇xh Ψ|z=h (22-A10)

Since the function only depends on kx − ωt, the average over a period is equivalent
to an average over a wavelength. But then the average of the first term vanishes
because of periodicity. For small amplitudes the last term may similarly be recast as
〈−∇xhΨ〉z=h ≈ 〈hvx〉z=h.

22.8 Using (22-19) we get

〈Fx〉 = −
�Z h

−d

p Ldz

�
=

�Z h

−d

�
p0 − ρ0

�
g0z +

∂Ψ

∂t
+

1

2
(v2

x + v2
z)

��
Ldz

�
= p0Ld +

1

2
ρ0g0d

2L− 1

2
ρ0g0a

2L− ρ0L

�Z h

−d

∂Ψ

∂t
dz

�
where we have used the expression for the total energy (22-46). Using the periodicity
we find

ρ0L

�Z h

−d

∂Ψ

∂t
dz

�
22.9
(a) Use mass conservation ∇xvx +∇zvz = 0 to get

∇x(Ψvx) +∇z(Ψvz) = vx∇xΨ + ψ∇xvx + vz∇zΨ + Ψ∇zvz = v2
x + v2

z

(b) Since Ψvx is a periodic function of x− ct we have

〈∇x(Ψvx)〉 =
1

τ

Z τ

0

∇x(Ψvx) dt =
1

λ

Z λ

0

∇x(Ψvx) dx =
�
Ψvx

�λ
0

= 0
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