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20.7 The pressure inside the bubble at depth z < 0 equals the hydrostatic pressure
(disregarding the tiny effect of surface tension)

P =Po — pogoZ . (20-A11)

where po is atmospheric pressure, po the density of the liquid, and « the liquid/gas
surface tension. The gas pressure is related to the density p by the ideal gas law p ~ p,
and the density of the gas in a bubble of fixed mass is p ~ R™3. Thus the pressure in
the bubble may be written

3
P =DPo (%) ) (20-A12)

where Ry is the radius of the bubble at the surface. Combining the two equations we
have obtained a relation between the depth below the surface and the radius of the

bubble
z=ho|1- (RO)B , ho = 22 (20-A13)
R P09go

The equation of motion for a bubble of mass m is
. . 4 3
mzZ = —6mnRz — gwR po—m ) goz (20-A14)

where the first term in the right hand side is the Stokes friction, and the second is the
force of buoyancy. Putting m = 0 we get

z 2 pogo 2
—=——"">=—R 20-A15
; 5 1 ( )

which together with the relation between depth and radius leads to an ordinary differ-
ential equation for z, which may easily be solved numerically.

21 Computational fluid dynamics

21.1 The last term is easily integrated, because
5/v-quV:/dV[6v~Vq+5'U-V5q] :/dV6v~Vq

where we have used Gauss theorem in the last step, and dropped the surface terms.
The middle term is also easily integrated, because

1
5/dV§ E (Viv;)? :/dV E Viv;Vidv; = /dV[fVZ'u]-é'v
1] ]

where we again have used Gauss theorem and discarded boundary terms.
The problem arises from the inertia term dv-(v-V)v = 37, 6viv;V;vi. Assume that
the integral is an expression of the form Zz‘jkl a;5510;0; Vv with suitable coefficients
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aiji satisfying aijrn = ajiki. Varying the velocity and again dropping boundary terms
we get (suppressing the integral as well as the sums over repeated indices)

5(aijklvivjvkvl) = 2ai]-kl5vivjvkvl + aijklvivjvkdvl
= Qa,-jkﬁvivjvkvl — 2aijk16vlvjvkvi
= 2(aijrl — Qijki)OVV; ViU,

In order for this to reproduce the desired result dv;v;V; v; we must have

1
Qijkl — Qljki = 551'1(5193' (21-A1)
but that is impossible because the left hand side is antisymmetric under interchange of
7 and [.
21.2 Under a small variation dp(x) we find
0 = / (Vp-Vip+ sdp)dV = / (7V2p + ) opdV (21-A2)
v v

where the surface terms in the integral have been dropped (assuming either p = 0 or
n-Vp = 0 on the surface). This vanishes only for arbitrary variations when the Poisson
equation is fulfilled. Choosing

op = e(V?p —s) (21-A3)

will make € negative and make the field converge towards the desired solution.

22 Surface waves
22.1 The wave becomes

h=TRe /00 a(k) expli(kx — w(k)t + x(k))] dk

—oo

o) _ 2
= 77?,6/ exp (z(kozr — wot + x0) + i(k — ko)(z — cgt — z0) — %) dk

— %Re/ exp (z kox — wot + x0) + iulAk(x — cgt — x0) —u2) du
) 2
1 ? 1.2 2
= exp i(kox — wot + x0) — [ u — §Akz(ﬂc—cgt—mo) — ZAk (x — cgt —x0)°| du
1

— exp [ (kox — wot + X0) —u? - iAkQ(xfcgtfxo)Z} du
X0

= cos(kox — wot + X0) exp {—iAkQ (x — cgt — mo)2] .

In the second line we have substituted k = ko+uAk and in the third we have rearranged
the resulting quadratic form. In the fourth we shift u — u+ £Ak(z — ¢gt — 20) and in
the fifth we use that [*_exp(—u®)du = /7.

The wave contains a single wave packet with a Gaussian envelope of width ~ 1/Ak
with the center moving along z = zo + c4t. The phase shift derivative o = —dx/dk
determines the position of the center at ¢t = 0.
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22.15

(a) For n = 0 it is trivial. For n # 0, the sum is geometric with progression factor
F = exp(2min/N)

N-—1 N-1 1 _ FN
exp [2m—] Z = =0 (22-A1)

m=0 =0

because F # 1 but FYN =

(b) Write the last expression as a double sum

hin NZ Nz: hi, exp {2m%} (22-A2)

m=0 k=0
and do the m-sum first.

(¢) Do the triple sum
S Jha? = % 3" b exp [QMW] (22-A3)
n n,m,k

Do the sum over n first.

22.2 From the solution (22-35) we find

ov,
ot

+ iVzp + go = —aw’ (1 + 2) cos(kz — wt) (22-A4)
£0

which ought to vanish. Since the finite-depth solution does satisfy the field equations,

the problem must lie in the higher-order terms in kz we have dropped in the shallow-

water limit.

22.3 From the flat-bottom solution (22-32) we find the particle orbit equations

de  coshk(z+d) .

g Ve T W sin(kx — wt) ,
dz _ sinhk(z+d)

i e T e B os(kz — wt) .

Under the assumption of small amplitude ak < 1, we have the approximative solution

cosh k(zo + d)

T =x0 — sinh kd sin(kzo — wt) (22-A5)
_ sinhk(zo +d)
z=z0+a <inh kd cos(kzo — wt) (22-A6)

This orbit is an ellipse centered at (zo, z0) with major axis a cosh k(2o + d)/ sinh kd and
minor axis asinh k(zo+d)/ sinh kd. For zo — —d, the minor axis vanishes and the ellipse
degenerates into a horizontal line. In the deep-water limit, the ellipses degenerate into
circles of radius ae®*°.
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22.5 Expanding to first order in h, we have

10 h ho[°
d/ Vg dZ+E 'Uac|z:0_ﬁ\/_dvm dz (22-A7)

Ty = =
—d
and

0
(B2) = % (hvs) g — % [ {hwe) a2 (22-A8)

Inserting (22-32) and integrating, the desired result is obtained. The expression vanishes
for d — 0.

22.6 The total amount of water in a shallow-water wave is M = poALd. The ratio
between the transported mass and the total mass is

@t _ a
poL d  2d2 (22-19)

For a/d = 0.1, it is only half a percent.
22.7 Since v, = V¥ we have

h h
/ Ve dz = Vz/ Vdz—V:h V| _, (22-A10)
—d —d

Since the function only depends on kxr — wt, the average over a period is equivalent
to an average over a wavelength. But then the average of the first term vanishes
because of periodicity. For small amplitudes the last term may similarly be recast as
(=Vah¥), ), = (hvz) -

22.8 Using (22-19) we get

" " AU 1, .,
<]:z>:*</ PLdZ>:</ <P0*po (QOZ+7+*(UZ+UZ))) Ldz>
—d —d ot 2
L 1 " ow
=pold + ongonL — ~pogoa’L — poL </ - dz>

2 ot

where we have used the expression for the total energy (22-46). Using the periodicity
we find
h
ov
poL < / e dz>
22.9

(a) Use mass conservation V,v; + V.v, = 0 to get
Ve (Uvs) + Vo (V0.) = 0, Ve U + Vv, + 0.V U 4+ UV, 0, = 02 + 02

(b) Since Wu, is a periodic function of z — ¢t we have

. A
(Vo (Tv,)) = %/0 Vo (Uvy) dt = %/0 Ve (Pvy)de = [\I!vz]g =0
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