
18
Viscosity

All fluids are viscous, except for a component of liquid helium close to absolute
zero in temperature. Air, water, and oil all put up resistance to flow, and a part
of the money we spend on transport by plane, ship or car goes to overcome fluid
friction, and eventually goes to heating the atmosphere, the sea, or the bearings
of the car. It may be true that money makes the world go around, but viscosity
requires you to have a continuous supply!

It is primarily the interplay between the mechanical inertia of a moving fluid
and its viscosity which gives rise to all the interesting and beautiful phenomena,
the whirling and the swirling that we are so familiar with. If a volume of fluid
inside a larger volume is set into motion, inertia would dictate that it continue in
its original motion, were it not checked by the action of internal shear stresses.
Viscosity acts as a brake on the free flow of a fluid and will eventually make it
come to rest in mechanical equilibrium, unless external driving forces continually
supply energy to keep it moving.

In an Aristotelian sense the “natural” state of a fluid is thus at rest with
pressure being the only stress component. Disturbing a fluid at rest slightly,
setting it into motion with spatially varying velocity field, will to first order of
approximation generate stresses that depend linearly on the spatial derivatives
of the velocity field. Fluids with a linear relationship between stress and velocity
gradients are called Newtonian, and the coefficients in this linear relationship are
material constants characterizing viscosity.

In this largely theoretical chapter the formalism for Newtonian viscosity will
be set up and we shall finally arrive at the famous Navier-Stokes equations for flu-
ids. Although superficially simple, these non-linear differential equations remain
a formidable challenge to both physicists and mathematicians.
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18.1 Shear viscosity
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If fluid moves faster above
a boundary surface, it will
exert a positive shear stress
on the boundary surface,
and conversely.

Consider a fluid flowing steadily along the x-direction with a velocity field vx(y)
which is independent of x, but changes with y. The fluid streams in layers parallel
with the xz-plane, and is an example of laminar flow. Due to the translational
symmetry in the xz-plane there ought to be a constant shear stress σxy(y) acting
on any planar surface at a given value of y. A velocity field without y-dependence
should not give rise to friction, because the fluid is then in simple uniform mo-
tion along the x-axis. If on the other hand the velocity grows with y, i.e. for
dvx(y)/dy > 0, we expect that the layer immediately above the boundary surface
at y will drag along the layer immediately below because of friction and thus ex-
ert a positive shear stress, σxy(y) > 0, on the boundary surface, and conversely if
the velocity decreases with y. It also seems reasonable to expect that a stronger
velocity gradient dvx(y)/dy will evoke a stronger stress.

Such arguments justify that the shear stress in this example should be pro-
portional to the gradient of the velocity field,

σxy(y) = η
dvx(y)

dy
. (18-1)

This is Newton’s law of viscosity. Newton did actually not write down this equa-
tion but stated it in words in his monumental work Principia from 1687. The
constant of proportionality, η, is called the coefficient of shear viscosity, the dy-
namic viscosity, or simply the viscosity. It is a measure of how strongly the fluid
layers are coupled by friction and is a material constant of the same nature as
the shear modulus for elastic materials. We shall see below that there is also a
bulk coefficient of viscosity corresponding to the elastic bulk modulus, but that
is rather unimportant in ordinary applications.

The viscosities of naturally occurring fluids range over many orders of mag-
nitude (see table 18.1). Since dvx/dy has dimension of inverse time, the unit for
viscosity η is Pa s (pascal seconds). Although it is sometimes called Poiseuille,
there is no special SI-name for it. In the older cgs-system it used to be called
poise.

Molecular origin of viscosity in gases

In gases where molecules are far apart, internal stresses are caused by the inces-
sant molecular bombardment of a boundary surface, transferring momentum in
both directions across it. In liquids where molecules are in closer contact, internal
stress is caused partly by molecular motion as in gases, and partly by intermolec-
ular forces. The resultant stress in a liquid is a quite complicated combination
of the two effects, and we shall for this reason limit the following discussion to
the molecular origin of stress in gases.

Gas molecules normally move at much greater speeds than the gas itself, and
the fluid velocity field v(x, t) should as discussed before be understood as the
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18.1. SHEAR VISCOSITY 329

density dynamic viscosity kinematic viscosity
ρ [kg m−3] η [Pa s] ν [m2s−1]

Hydrogen 8.80× 10−6 1.10× 10−4

Air (NTP) 1.2 1.82× 10−5 1.57× 10−5

Water 1× 103 8.90× 10−4 8.64× 10−7

Ethanol 1.08× 10−3 1.08× 10−3

Mercury 1.53× 10−3 1.14× 10−7

Blood 4× 10−3

Engine oil 1.75× 10−2 2.03× 10−5

Olive oil 6.70× 10−2 6.70× 10−2

Castor oil 7.00× 10−1 7.00× 10−1

Glycerol 1.41 1.18× 10−3

Ketchup 5× 101

Tar 3× 107

Glass 1× 1012

Magma

Table 18.1: Table of density, and dynamic and kinematic viscosity for common sub-
stances (at normal temperature and pressure). Some of the values are only estimates.
Notice that air has greater kinematic viscosity than water and hydrogen greater than
engine oil!

center-of-mass velocity of a large collection of molecules. For the case of steady
laminar planar flow with increasing velocity field vx(y), molecules crossing a
surface element in the xz-plane from above will carry with them an excess of
momentum in the x-direction and therefore exert a force Fx on the material
below. Similarly, the material below will exert an equal and opposite force on
the material above.

Let the typical distance between molecular collisions in the gas be λ and the
typical time between collisions τ . The excess of momentum in the x-direction
above an area element dSy in a layer of thickness λ is of the order of
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Layers of fluid moving with
different velocities give rise
to shear forces because they
exchange molecules with
different average velocities.

dPx ∼ (vx(y + λ)− vx(y))ρλdSy ∼ ρλ2 dvx(y)
dy

dSy .

This excess of momentum will be carried along by the fast molecular motion in
all directions and about half of it will cross the surface in the time τ . The shear
stress may be estimated as the momentum transfer per unit of time and area,
σxy = dPx/τdSy, and takes indeed the form of Newton’s law of viscosity (18-1)
with a rough estimate of the shear viscosity,

η ∼ ρ
λ2

τ
. (18-2)

For gases this estimate becomes of the right order of magnitude (see problem
18.1), but in general it does not yield precise values for the viscosity.
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330 18. VISCOSITY

Temperature dependence of viscosity

The viscosity of any material depends on temperature. Common experience from
kitchen and industry tells us that most liquids become “thinner” when heated.
Gases on the other hand become more viscous at higher temperatures, simply
because the molecules move faster at random and thus transport momentum
across a surface at a higher rate.

For a gas, the collision length λ may be estimated by requiring that there
should be about one other molecule in the cylindrical volume λA swept out
between collisions by any molecule of cross section A. Denoting the molecular
mass by m = Mmol/NA, this argument leads to the estimate ρλA ∼ m, implying
that ρλ is independent of both pressure and temperature. But then the viscosity
estimate (18-2) can only depend on these quantities through the typical molecular
velocity vmol ∼ λ/τ . From kinetic gas theory we know that 1

2mv2
mol ∼ kBT where

T is the absolute temperature and kB is Boltzmann’s constant, so that vmol ∝
√

T ,
and consequently we must also have η ∝ √

T . Thus, if the gas viscosity is η0 at
temperature T0, it will simply be

η = η0

√
T

T0
(18-3)

at temperature T , independently of the pressure.

Kinematic viscosity

The viscosity estimate (18-2) seems to point to another measure of viscosity,
called the kinematic viscosity1,

ν =
η

ρ
. (18-4)

Since its estimate, ν ∼ λ2/τ , does not depend on the unit of mass, this param-
eter is measured in purely kinematic units of m2/s (in the older cgs-system, the
corresponding unit cm2/s was called stokes). In fluids with constant density, it
is a material constant at equal footing with the dynamic viscosity η (see table
18.1). It should be remembered that in an ideal gas we have ρ ∝ p/T , so that the
kinematic viscosity will depend on both temperature and pressure, ν ∝ T 3/2/p.
For isentropic gases it always decreases with temperature (problem 18.2).

It is as we shall see the kinematic viscosity which appears in the dynamic equa-
tions for the velocity field, rather than the dynamic viscosity. Normally, we would
think of air as less viscous than water and hydrogen as less viscous than engine
oil, but under suitable conditions it is really the other way around. If a flow is
driven by inflow of fluid with a certain velocity rather than being controlled by
pressure, air behaves as if it is 10–20 times more viscous than water. But subject
to a given pressure, air is much easier to set into motion than water because it is
a thousand times lighter, and that is what fools our intuition.

1The notational clash with Poisson’s ratio will in general not be a problem.
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18.2. VELOCITY-DRIVEN PLANAR FLOW 331

18.2 Velocity-driven planar flow

Before turning to the derivation of the complete set of Navier-Stokes equations for
viscous flow, we shall explore the concept of shear viscosity a bit further for the
simple case of planar flow. Let us as before assume that the flow is laminar and
planar with the only non-vanishing velocity component being vx = vx(y, t), now
also allowing for time dependence. It is rather clear that there can be no advective
acceleration in such a field, and formally we also find (v ·∇)vx = vx∇xvx = 0.
In the absence of volume and pressure forces, the Newtonian shear stress (18-
1) will be the only non-vanishing component of the stress tensor, and Cauchy’s
dynamical equation (15-35) reduces to

ρ
∂vx

∂t
= f∗x = ∇yσxy = η

∂2vx

∂y2
,

Dividing by the density (which is assumed to be constant) we get

∂vx

∂t
= ν

∂2vx

∂y2
, (18-5)

where ν is the kinematic viscosity (18-4). This is a simplified version of the
Navier-Stokes equations, particularly well suited for the discussion of the basic
physics of shear viscosity.

Steady planar flow

Let us first return to the case of steady planar laminar flow which this chapter
began with. In steady flow the left hand side of (18-5) vanishes, and from the
vanishing of the right hand side it follows that the general solution must be
linear, vx = A + By, with arbitrary integration constants A and B. We shall
imagine that the flow is maintained between (in principle infinitely extended)
solid plates, one kept at rest at y = 0 and one moving with constant velocity
U at y = d. Where the fluid makes contact with the plates, we require it to
assume the same speed as the plates, in other words vx(0) = 0 and vx(d) = U
(this no-slip boundary condition will be discussed in more detail later). Solving
these conditions we find A = 0 and B = U/d such that the field between the
plates becomes

6

y

-
-

-
-

-
-

U -

x0

d

A Newtonian fluid with spa-
tially uniform properties
between moving parallel
plates. The velocity field
varies linearly between the
plates and satisfies the
boundary conditions that
the fluid is at rest relative
to both plates (no-slip).

vx(y) =
y

d
U , (18-6)

independently of the viscosity. From this expression a we obtain the shear stress,

σxy = η
dvx

dy
= η

U

d
, (18-7)

which is independent of y, as one might have expected.
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Viscous friction

A thin layer of viscous fluid may be used to lubricate the interface between solid
objects. From the above solution we may calculate the friction force, or drag,
exerted on the body by the layer of viscous lubricant (see also chapter 24). Let
the would-be contact area between the body and the surface on which it slides
be A, and let the thickness of the fluid layer be d everywhere. If the layer is
thin, d ¿ √

A, we may disregard edge effects and use the planar stress (18-7) to
calculate the drag force,

qqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

r - U

A
d
@R - x

A solid object sliding on a
plane lubricated surface. D ≈ −σxyA = −ηUA

d
. (18-8)

The velocity dependent viscous drag is quite different from the constant drag
experienced in solid friction (see section 9.1 on page 142). The decrease in drag
with falling velocity makes the object seem to want to slide “forever”, and this is
presumably what makes ice sports such as skiing, skating, sledging, and curling
interesting. A thin layer of liquid water acts here as lubricant. Likewise, it is
scary to brake a car on ice, or to aquaplane, because the fall in viscous friction
as the speed drops makes the car appear to run away from you.

The quasi-steady horizontal equation of motion for an object of mass M , not
subject to other forces than viscous drag, is

M
dU

dt
= −η

A

d
U . (18-9)

Assuming that the thickness of the lubricant layer stays constant (and that is by
no means evident) the solution to (18-9) is

U = U0e
−t/t0 , t0 =

Md

ηA
, (18-10)

where U0 is the initial velocity and t0 is the characteristic exponential decay time
for the velocity. Integrating this expression we obtain the total stopping distance

L =
∫ ∞

0

U dt = U0t0 =
U0Md

ηA
. (18-11)

Although it formally takes infinite time for the sliding object to come to a full
stop, it does so in a finite distance. The stopping length grows with the mass
of the object which is quite unlike solid friction, where the stopping length is
independent of the mass. This effect is partially compensated by the dynamic
dependence of the layer thickness d ∼ 1/

√
M on the mass (see chapter 24).

Example 18.2.1: In the ice sport of curling, a “stone” with mass M ≈ 20 kg is
set into motion with the aim of bringing it to a full stop at the far end of an ice
rink of length L ≈ 40 m. The area of the highly polished contact surface to the ice
is A ≈ 700 cm2 and the initial velocity about U0 ≈ 3 m/s. From (18-11) we obtain
the thickness of the fluid layer d ≈ 43 µm which does not seem unreasonable, and
neither does the decay time t0 ≈ 13 s. The players’ intense sweeping of the ice in
front of the moving stone presumably serves to smooth out tiny irregularities in the
surface, which could otherwise slow down the stone.
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Momentum diffusion

The dynamic equation (18-5) is a typical diffusion equation with diffusion con-
stant equal to the kinematic viscosity, ν, also called momentum diffusivity. In
general, such an equation leads to a spreading of the distribution of the diffused
quantity, which in this case is the velocity field, or perhaps better, the momen-
tum density ρvx. The generic example of a flow with momentum diffusion is the
Gaussian “river”,

6
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Velocity distribution for a
planar Gaussian “river” in
an “ocean” of fluid.vx(y, t) = U

a√
a2 + 4νt

exp
(
− y2

a2 + 4νt

)
, (18-12)

which may be verified to be a solution to (18-5) by direct insertion, This river

y

vx

A Gaussian “river” widens
and slows down in the
course of time because of
viscosity.

starts out at t = 0 with Gaussian width a and maximum velocity U , and spreads
with time so that it at time t has width

√
a2 + 4νt. Although momentum diffuses

away from the center of the river, the total momentum must remain constant
because there are no external forces acting on the fluid. Kinetic energy is on the
other hand dissipated and ends up as heat (see problem 18.4).

For sufficiently large times, t À a2/4ν, the shape of the Gaussian becomes
independent of the original width a. This is in fact a general feature of any
bounded “river” flow: it eventually becomes proportional to exp(−y2/4νt) (see
problem 18.5). The Gaussian factor drops sharply to zero for y &

√
4νt and

it appears as if momentum diffusion has a fairly well-defined front, which for
example may be taken to be y = 2

√
νt where the Gaussian has become e−1 = 37%

of its central value. Depending on the application, it is sometimes convenient to
choose a more conservative estimate for the spread of momentum, for example
y = 3.5

√
νt, where the Gaussian factor has dropped to 5% of its central value.

Momentum diffusion may equivalently be characterized by the time, it takes
for a velocity disturbance to spread through a distance L by diffusion,

t ≈ L2

4ν
, (18-13)

or a correspondingly more conservative estimate. It must be emphasized that
momentum diffusion (in this case) takes place orthogonally to the general direc-
tion of motion of the fluid. In spite of the fact that momentum flows away from
the center in the y-direction, there is no mass flow in the y-direction because
vy = 0. In less restricted flows there may be a more direct competition between
mass flow and diffusion. If the velocity scale of a flow is |v| ∼ U , it would take
the time tflow ≈ L/U for the fluid to move through the distance L, and the ratio
of the the diffusion time scale tdiff ≈ L2/ν to the mass flow time scale becomes a
dimensionless number Re ≈ tdiff/tflow ≈ UL/ν, first used by Reynolds to classify
different flows. When this number is large compared to unity, momentum diffu-
sion takes much longer time than mass flow and plays only a little role, whereas
when Re is small momentum diffusion wins over mass flow and dominates the
flow pattern. The Reynolds number is a very useful parameter which will be
discussed in more detail in section 18.4.
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Shear sound waves

Consider an infinitely extended plate in contact with an infinite sea of fluid. Let
the plate oscillate with circular frequency ω, so that its instantaneous velocity in
the x-direction is U(t) = U0 cos ωt. The motion of the plate is transferred to the
neighboring fluid because of the no-slip condition and then spreads into the fluid
at large. How far does it go? By direct insertion into (18-5) that

vx(y, t) = U0e
−ky cos (ky − ωt) , k =

√
ω

2ν
, (18-14)

satisfies the planar flow equation (18-5) as well as the no-slip boundary condition
y

vx

The shape of a transverse
wave.

vx = U(t) for y = 0. Evidently, this is a damped wave spreading from the
oscillating plate into the fluid. Since the velocity oscillations take place in the x-
direction whereas the wave propagates in the y-direction it is a transverse or shear
wave. The wave number k both determines the wave length λ = 2π/k and the
decay length of the exponential, also called the penetration depth d = 1/k = λ/2π.
The wave is critically damped and penetrates less than one wavelength into the
fluid, so it is really not much of a wave. Although longitudinal (pressure) waves
are also attenuated by viscosity, they propagate over much greater distances (see
section 18.6).

Example 18.2.2: A shear sound wave in air of frequency 1000 Hz has wave length
0.4 mm, whereas in water it is 0.1 mm.

18.3 Incompressible Newtonian fluids

There are numerous everyday examples of fluids obeying the Newtonian law of
viscosity (18-1), for example water, air, oil, alcohol, and antifreeze. A number of
common fluids are only approximatively Newtonian, for example paint and blood,
and others are strongly non-Newtonian, for example tomato ketchup, jelly, and
putty. There even exist viscoelastic materials that are both elastic and viscous,
sometimes used in toys that can be deformed like clay but also jump like a rubber
ball.

Most everyday fluids are incompressible, or at least effectively so when the
flow velocities are much smaller than the velocity of sound (see section 16.4 on
page 269). We shall in this section only establish the general dynamical equations
for the simpler case of incompressible, isotropic Newtonian fluids and postpone
the analysis of the slightly more complicated compressible fluids to section 18.5.

Isotropic viscous stress

Newton’s law of viscosity (18-1) is a linear relation between the stress and the
velocity gradient, only valid in a particular geometry. As for Hooke’s law in
elasticity (page 174) we want a more general definition of viscous stress which
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takes the same form for any geometry and in any Cartesian coordinate system,
so that we are free to choose our own reference frame.

Most ordinary fluids are not only Newtonian, but also isotropic. Liquid crys-
tals are anisotropic, but so special that we shall not consider them here. In an
isotropic fluid at rest there are no directions defined at all and the stress tensor is
determined by the pressure, σij = −p δij . When such a fluid is set in motion, the
velocity field vi(x, t) defines a direction in every point of space, but as we have
argued before the velocity in a point cannot itself provoke stress in the fluid. It
is the variation in velocity from point to point that causes stress. Viscous stress
is in other words be determined by the tensor of velocity gradients ∇ivj .

In an incompressible fluid, the trace of the velocity gradients vanishes,∑
i∇ivi = ∇·v = 0, so that the most general symmetric tensor one can construct

from the velocity gradients is of the form,

σij = −p δij + η (∇ivj +∇jvi) . (18-15)

The coefficient of the last term may be identified with the shear viscosity η by
inserting the field of a steady planar flow v = (vx(y), 0, 0), because it then follows
that the only shear stress is σxy = σyx = η∇yvx(y) in agreement with (18-1).
The trace of this stress tensor is

∑
i σii = −3p, in agreement with the general

definition of pressure (9-12).

Since a fluid particle is displaced by δu = v δt in a small time interval δt, fluid
motion may be seen as a continuous sequence of infinitesimal deformations with
strain tensor, δuij = 1

2
(∇iδuj +∇jδui) = 1

2
(∇ivj +∇jvi) δt. The symmetrized

velocity gradients vij ≡ δuij/δt = 1
2
(∇ivj +∇jvi) may thus be understood as the

rate of deformation or rate of strain of the fluid material.

The Navier-Stokes equations for incompressible fluid

The right hand side of Cauchy’s general equation of motion (15-35) equals the
effective density of force f∗i = fi +

∑
j ∇jσij . Inserting the stress tensor (18-15)

and using again that ∇ · v = 0, we find
∑

j

∇jσij = −∇ip + η (
∑

j

∇i∇jvj +
∑

j

∇2
jvi) = −∇ip + η∇2vi .

Here we have tacitly assumed that the fluid is homogeneous such that the shear
viscosity (like the density ρ) does not depend on x. If the temperature or chemical
composition of the fluid varies in space, the right hand side must be modified.

Inserting this expression into Cauchy’s equation of motion and converting to
ordinary vector notation we finally obtain the Navier-Stokes equation for incom-
pressible fluid (Navier (1822), Stokes (1845))

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p + ν∇2v + g , (18-16)
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where ν = η/ρ is the kinematic viscosity and g = f/ρ is the acceleration field
of the volume forces (normally due to gravity). The only difference from the
Euler equation (16-1) is the second term on the right hand side. Besides the
Navier-Stokes equation, we must also impose the divergence condition for incom-
pressibility,

∇ · v = 0 . (18-17)

Given the acceleration field g, we now have four equations for the four fields, v
and p. Notice, however, that whereas the three velocity fields obey truly dynamic
equations with each field having its own time derivative, this is not the case for the
pressure which is only determined indirectly through the divergence condition.

Although relatively simple to look at, the Navier-Stokes equations contain all
the complexity of real fluid flow, including that of Niagara Falls! It is therefore
clear that one cannot in general expect to find simple solutions. Exact solu-
tions can only be found in strongly restricted geometries and under simplifying
assumptions concerning the nature of the flow, as in the planar laminar flow
examples in the preceding section.

Among the seven Millenium Prize Problems set out by the Clay Mathematics
Institute of Cambridge, Massachusetts, one concerns the existence of smooth,
non-singular solutions to the Navier Stokes equations (even for the simpler case
of incompressible flow). The prize money of one million dollars illustrates how
little we know and how much we would like to know about the general features of
these equations which appear to defy the standard analytic methods for solving
partial differential equations.

Boundary conditions

Differential equations always require boundary conditions. Field equations that
are first order in time, like the Navier-Stokes equation (18-16), need initial values
of the fields (and their spatial derivatives) in order to predict their values at later
times. But what about physical boundaries, the containers of fluids, or even
internal boundaries between different fluids? How do the fields behave there?
Let us discuss the various fields that we have met one by one.

Density: The density is easy to dispose of, since it is allowed to be discontin-
uous and jump at a boundary between two materials, so this provides us with
no condition at all. It is evident from the Navier-Stokes equation that a jump in
density across a fluid boundary must somehow be accompanied by a jump in the
derivatives of the other fields, but we shall not go into this question here.

Pressure: Newton’s third law requires the pressure to be continuous across any
boundary. This simple picture is, however, complicated by surface tension, which
can give rise to a discontinuous jump in pressure across an interface between two
materials.
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Velocity: The normal component vn = v · n of the velocity field must be
continuous across any boundary, for the simple reason that what goes in on one
side must come out on the other. If this were not the case, material would collect
at the boundary or holes would develop in the fluid. The latter kind of breakdown
can actually happen in extreme situations (cavitation).
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The tangential component of velocity vt = n× (v×n) must also be continu-
ous, but for different reasons. The linear relationship (18-1) between stress and
velocity gradient implies that a tangential velocity field which changes rapidly
along the direction normal to a surface, must create very large and rapidly vary-
ing shear stress. In the extreme case of a discontinuous jump in velocity, the
shear stress would become infinite. Although large stresses may be created, for
example by hitting a fluid container with a hammer, they can however not be
maintained for long, but are rapidly smoothed out by viscous momentum dif-
fusion. Only if the continuum approximation breaks down, shear slippage may
occur, for example in extremely rarified gases.

Usually the whole velocity field, normal as well as tangential components, will
therefore be assumed to be continuous across any boundary between Newtonian
fluids. Since a solid wall may be viewed as an extreme Newtonian fluid with
infinite viscosity, we recover the previously mentioned no-slip condition: a fluid
has zero velocity relative to its containing walls. Viscous fluids never slip along
the containing boundaries but adhere to them, and this is part of the reason that
viscous fluids are wet.

∗ Viscous dissipation

If you stir a pot of soup the fluid is set into motion, but eventually it comes to
rest again because of internal friction. The work you perform on the soup while
stirring it will contribute to its kinetic energy, which in the end — when the
motion stops — goes to heat the soup by an immeasurably small amount. We
shall discuss heat extensively in chapter 28 but it is useful already at this point
to calculate the rate at which kinetic energy is lost to internal friction.

The rate of work of the internal stresses is given by (17-79) on page 317. From
the Newtonian stress tensor (18-15) we find the integrand,

−
∑

ij

σij∇jvi = −1
2

∑

ij

σijvij = −2η
∑

ij

v2
ij (18-18)

where vij = 1
2 (∇ivj +∇jvi) is the strain rate tensor, and where we have used its

symmetry to obtain the final expression. Since the final expression is evidently
negative, the power of the internal stresses will be negative and always give rise
to a loss of kinetic energy, i.e. to dissipation.

∗ Non-locality of pressure

For incompressible fluids, the pressure is not given by an equation of state, but
rather determined by the divergence condition, and that leads to special diffi-
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culties. Calculating the divergence of both sides of (18-16), we obtain a Poisson
equation for the pressure,

∇2p = ρ
(−∇ · ((v ·∇)v) + ∇ · g)

. (18-19)

Solutions to the Poisson equation are generally of the same form as the gravi-
tational potential from a mass distribution (3-24) and thus depends non-locally
on the field (the source) on the right hand side. Physically this means that any
change in the velocity field is instantaneously communicated to the rest of the
fluid through the pressure.

Like true rigidity, true incompressibility is an ideal which cannot be reached
with real materials, where the velocity of sound sets an upper limit to signal
propagation speed. The above result nevertheless means that any local change
in the flow will be communicated by the pressure to any other parts of the fluid
at the speed of sound. This phenomenon is in fact well-known from everyday
experience where the closing of a faucet can result in rather violent so-called
“water-hammer” responses from the house piping. The non-locality of pressure
is also a major problem in numerical simulations of the Navier-Stokes equations
for incompressible fluids where it demands the calculation of a fairly complete
solution to the Poisson equation for each numerical step forward in time (see
chapter 21).

18.4 Classification of flows

The most interesting phenomena in fluid dynamics arise from the competition
between the inertia of the fluid represented in the Navier-Stokes equation (18-16)
by the advective term (v ·∇)v and the viscosity represented by ν∇2v. Inertia
attempts to continue the motion of a fluid once it is started whereas viscosity
acts as a brake. If inertia is dominant we may leave out the viscous term, arriving
again at Euler’s equation (16-1) describing lively, inviscid or ideal flow (see chap-
ter 16). If on the other hand viscosity is dominant, we may drop the advective
term, and obtain the basic equations for sluggish creeping flow (see chapter 20).

The Reynolds number
Osborne Reynolds (1842-
1912). British engineer and
physicist. Contributed to
fluid mechanics in general,
and to the understanding of
lubrication, turbulence, and
tidal motion, in particular.

As a measure of how much an actual flow is lively or sluggish, one may make a
rough estimate, called the Reynolds number, for the magnitude of the ratio of the
advective to the viscous terms. To get a simple expression we assume that the
velocity is of typical size |v| ≈ U and that it changes by a similar amount over
a region of size L. The order of magnitude of the first order spatial derivatives
of the velocity will then be of magnitude |∇v| ≈ U/L, and the second order
derivatives will be

∣∣∇2v
∣∣ ≈ U/L2. Consequently, the Reynolds number becomes

Re ≈ |(v ·∇)v|
|ν∇2v| ≈ U2/L

νU/L2
=

UL

ν
. (18-20)
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fluid size velocity Reynolds
L [m] U [ms−1] number

submarine water 100 15 1.7× 109

airplane air 50 200 6.3× 108

blue whale water 30 10 3.4× 108

car air 5 30 9.4× 106

swimming human water 2 1 2.3× 106

running human air 2 3 3.8× 105

herring water 0.3 1 3.8× 105

golf ball air 0.043 40 2.2× 105

ping-pong ball air 0.040 10 5× 104

fly air 0.01 1 600
flea air 0.001 3 190
gnat air 0.001 0.1 6
bacterium water 10−6 10−5 10−5

bacterium blood 10−6 4× 10−6 10−9

Table 18.2: Table of Reynolds numbers for some moving objects calculated on the basis
of typical values of lengths and speeds. Viscosities are taken from table 18.1 on page 329.
It is perhaps surprising that a submarine operates at a Reynolds number that is larger
than that of a passenger jet at cruising speed, but this is mostly due to the tiny density
of air relative to that of water.

For small values of the Reynolds number, Re ¿ 1, advection plays no role and
the flow creeps along, whereas for large values, Re À 1, viscosity can be ignored
and the flow tends to be lively. The streamline pattern of creeping flow is orderly
and layered, also called laminar, well-known from the kitchen when mixing cocoa
into dough to make a chocolate cake (although dough is hardly Newtonian!). The
laminar flow pattern continues quite far beyond Re ' 1, but depending on the flow
geometry and other circumstances, there will be a Reynolds number, typically in
the region of thousands, where turbulence sets in with its characteristic tumbling
and chaotic behavior.

It is often quite easy to estimate the Reynolds number from the geometry
and boundary conditions of a flow pattern, as is done in the following examples
and in table 18.2.

Example 18.4.1: Getting out of a bathtub you create flows with speeds of say
U ≈ 1 m/s over a distance of L ≈ 1 m. The Reynolds number becomes Re ≈ 106

and you are definitely creating visible turbulence in the water. Similarly, when
jogging you create air flows with U ≈ 3 m/s and L ≈ 1 m, leading to a Reynolds
number around 2×105, and you know that you must leave all kinds of little invisible
turbulent eddies in the air behind you. The fact that the Reynolds number is smaller
in air than in water despite the higher velocity is a consequence of the kinematic
viscosity being larger for air than for water.

Example 18.4.2: For planar flow between two plates (section 18.1), the velocity
scale is set by the velocity difference U between the plates whereas the length scale is
set by the distance d between the plates. In the curling example 18.2.1 on page 332
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we found U ≈ 3 m/s and d ≈ 43 µm, leading to a Reynolds number Re = Ud/ν ≈
140. Although not truly creeping flow, it is definitely laminar and not turbulent.

Example 18.4.3: A typical 1/2” water pipe has diameter d ≈ 1.25 cm and
that sets the length scale. If the volume flux of water is Q = 100 cm3/s, the
average water speed becomes U = Q/πa2 ≈ 0.8 m/s and we get a Reynolds number
Re = Ud/ν ≈ 12, 000 which brings the flow well beyond the laminar and into the
turbulent regime. For olive oil under otherwise identical conditions we get Re ≈ 0.15,
and the flow will be creeping.

Hydrodynamic similarity

What does it mean if two flows have the same Reynolds number? A stone of
size L = 1 m sitting in a steady water flow with velocity U = 2 m/s has the
same Reynolds number as another stone of size L = 2 m in a steady water flow
with velocity U = 1 m/s. It even has the same Reynolds number as a stone of
size L = 4 m in a steady airflow with velocity U = 9 m/s, because the kinematic
viscosity of air is about 18 times larger than of water (at normal temperature and
pressure). We shall now see that provided the stones are geometrically similar,
i.e. have congruent geometrical shapes, flows with the same Reynolds numbers
are also hydrodynamically similar and only differ by their overall length and
velocity scales, so that their flow patterns visualized by streamlines will look
identical.

In the absence of volume forces, steady incompressible flow is determined by
(18-16) with g = 0 and ∂v/∂t = 0, or

(v ·∇)v = −1
ρ
∇p + ν∇2v . (18-21)

Let us rescale all the variables by means of the overall scales ρ, U , and L, writing

v = U v̂ , x = Lx̂ , p = ρU2p̂ , ∇ =
1
L

∇̂ , (18-22)

where the hatted symbols are all dimensionless. In terms of these variables, the
steady flow equation takes the form,

(v̂ · ∇̂)v̂ = −∇̂p̂ +
1
Re

∇̂2
v̂ . (18-23)

The only parameter appearing in this equation is the Reynolds number which
may be interpreted as the inverse of the dimensionless viscosity. The pressure
is as mentioned not an independent dynamic variable and its scale is here fixed
by the flow velocity scale, P = ρU2. If the flow is driven by external pressure
differences of magnitude P rather than by velocity, the equivalent flow velocity
scale is given by U =

√
P/ρ.

In congruent flow geometries, the no-slip boundary conditions will also be the
same, so that any solution of the dimensionless equation can be scaled back to a
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solution of the original equation by means of (18-22). Thus, the three different
flow cases mentioned at the beginning of this subsection may all be obtained from
the same dimensionless solution if the stones are geometrically similar and the
Reynolds numbers identical.

Even if the flows are similar, the forces exerted on the stones will not be the
same. From the estimate of the shear stress σ ≈ η |∇v| ≈ ηU/L we may estimate
the drag on an object of size L to be of magnitude D ≈ σL2 = ηUL = ηνRe.
Since the Reynolds numbers are the same, the ratio of the drag on the stone in air
to the drag on the stone in water is about Dair/Dwater ≈ (ην)air/(ην)water ≈ 0.37.

Example 18.4.4 (Flight of the Robofly): The similarity of flows in con-
gruent geometries can be exploited to study the flow around tiny insects by means
of enlarged slower moving models, immersed in another fluid. It is, for example,
hard to study the air flow around the wing of a hovering fruit fly, when the wing
flaps f = 50 times per second. For a wing size of L ≈ 4 mm flapping through 180◦

the average velocity becomes U ≈ πLf ≈ 1.3 m/s and the corresponding Reynolds
number Re ≈ UL/ν ≈ 160. The same Reynolds number can be obtained (see J. M.
Birch and M. H. Dickinson, Nature 412, 729 (2001)) from a 19 cm plastic wing of
the same shape, flapping once every 6 seconds in mineral oil with kinematic viscosity
ν = 1.15 cm2/s.

Example 18.4.5 (High pressure wind tunnels): In the early days of
flight, wind tunnels were extensively used for empirical studies of lift and drag on
scaled-down models of wings and aircraft. The smaller geometrical sizes of the
models reduced the attainable Reynolds number below that of real aircraft in flight.
A solution to the problem was obtained by operating wind tunnels at much higher
than atmospheric pressure. Since the dynamic viscosity η is independent of pressure
(page 330), the Reynolds number Re = ρUL/η scales with the air density and thus
with pressure. The famous Variable Density Tunnel (VDT) built in 1922 by the US
National Advisory Committee for Aeronautics (NACA) operated on a pressure of
20 atmospheres and was capable of attaining full-scale Reynolds numbers for models
only 1/20’th of the size of real aircraft [54, p. 301]. The results obtained from the
VDT had great influence on aircraft design in the following 20 years.

In the presence of external volume forces, for example gravity, or for time
dependent inflow, the flow patterns will depend on further dimensionless quanti-
ties besides the Reynolds number. We shall only introduce such quantities when
they arise naturally in particular cases. Flows in different geometries can only
be compared in a coarse sense, even if they have the same Reynolds number. A
running man has the same Reynolds number as a swimming herring, and a flying
gnat the same Reynolds number as a man swimming in castor oil (which cannot
be recommended). In both cases the flow geometries are quite different, leading
to different streamline patterns. Here the Reynolds number can only be used to
indicate the character of the flow which tends to be turbulent around the running
man and laminar around the flying gnat.
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18.5 Compressible Newtonian fluids

When flow velocities approach the velocity of sound in a fluid, it is no longer
possible to maintain the simplifying assumption of effective incompressibility.
Whereas submarines and ships never come near such velocities, passenger jets
routinely operate at speeds up to 80% of the velocity of sound, and rockets,
military aircraft, the Concorde and the Space Shuttle, are all capable of flying at
supersonic and even hypersonic speeds. In all these cases high pressures builds
up, especially at the leading edges of the moving bodies.

Shear and bulk viscosity

In compressible fluids the divergence of the velocity field is non-vanishing. This
opens up the possibility of adding a term proportional to (∇·v)δij to the isotropic
stress tensor (18-15),

σij = −p δij + η (∇ivj +∇jvi) + a∇ · v δij . (18-24)

Demanding as usual that the pressure is the average of the three normal stresses,
p = −∑

i σii/3, the trace of this expression becomes −3p = −3p + 2η∇ · v +
3a∇ · v = 0, so that we must have a = − 2

3η. The complete stress tensor thus
becomes

σij = −p δij + 2ηvij , (18-25)

where vij is the symmetric velocity gradient tensor,

vij =
1
2

(
∇ivj +∇jvi − 2

3
∇ · v δij

)
. (18-26)

Since it is traceless, it represents the shear strain rate.
The form of the stress tensor (18-25) may be viewed as a first order expansion

in the velocity gradients. In the same approximation the pressure may also
depend linearly on the velocity gradients, but since the pressure is a scalar it can
only depend on the scalar divergence ∇ · v, so that the most general form of the
pressure must be

p = pe − ζ∇ · v , (18-27)

with coefficients pe and ζ that may depend on the density ρ and temperature T .
In hydrostatic equilibrium, v = 0, the pressure pe is assumed to be given by the
equilibrium equation of state, pe = pe(ρ, T ).

The new parameter ζ is variously called the bulk viscosity, the second viscosity,
or the expansion viscosity. Its presence implies that a viscous fluid in motion
exerts an extra dynamic pressure of size −ζ∇ · v. The dynamic pressure is
negative in regions where the fluid expands (∇·v > 0), positive where it contracts
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(∇ · v < 0), and vanishes for incompressible fluids. Bulk viscosity is hard to
measure, because one must set up physical conditions such that expansion and
contraction become important, for example by means of high frequency sound
waves. In the following section we shall calculate the viscous attenuation of sound
in fluids, which depends on the bulk modulus. The attenuation of sound is quite
complicated and yields a rather frequency dependent bulk viscosity, although it
is generally of the same magnitude as the coefficient of shear viscosity.

The Navier-Stokes equations

Inserting the modified stress tensor (18-25) into Cauchy’s equation of motion we
obtain the field equation,

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p + η

(
∇2v +

1
3
∇(∇ · v)

)
+ f . (18-28)

This is the most general form of the Navier-Stokes equation (Navier (1822), Stokes
(1845)). Together with the equation of continuity (15-25), which we repeat here
for convenience,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (18-29)

we have obtained four dynamic equations for the four fields v and ρ, and one
constitutive relation (18-27) for the pressure p. As in incompressible fluids, the
pressure is not a true dynamic variable.

∗ Viscous dissipation

For compressible fluids the integrand of the power of internal stresses (17-79)
is slightly more complicated than for incompressible fluids (18-18). Using the
stress tensor (18-25) and the expression for the pressure (18-27), we obtain the
integrand of the internal power for compressible fluids,

∑

ij

σij∇jvi = −pe∇ · v + ζ(∇ · v)2 + 2η
∑

ij

v2
ij . (18-30)

The first term represents the expansion and compression of the fluid against the
equilibrium pressure whereas the last two positive definite terms represent the
dissipation of kinetic energy through bulk and shear viscosity.

18.6 Viscous attenuation of sound

It has previously (page 334) been shown that free shear waves do not propagate
through more than about one wavelength from their origin in any type of fluid.
In nearly ideal fluids such as air and water, free pressure waves are as everybody
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knows capable of propagating over many wavelengths. Viscous dissipation (and
many other effects) will nevertheless slowly sap their strength and in the end all
of the kinetic energy of the waves will be converted into heat.

In this section we shall calculate the rate of viscous dissipation by finding solu-
tions to the Navier-Stokes equations in the form of damped waves. Alternatively,
the rate of dissipation can be calculated from (18-30).

The wave equation

As in the discussion of unattenuated pressure waves in section 16.2 on page 261 we
assume to begin with that a barotropic fluid is in hydrostatic equilibrium without
gravity, v = 0, so that its density ρ = ρ0 and pressure p = p(ρ0) were constant
everywhere. Consider now a disturbance in the form of a small-amplitude motion
of the fluid, described by a velocity field v which is so tiny that the non-linear
advective term (v · ∇)v can be completely disregarded. This disturbance will
be accompanied tiny density corrections, ∆ρ = ρ − ρ0, and pressure corrections
∆p = p − p0, which we assume to be of first order in the velocity. Dropping all
higher order terms, the linearized Navier-Stokes equations become

ρ0
∂v

∂t
= −∇∆p + η

(
∇2v +

1
3
∇(∇ · v)

)
, (18-31a)

∂∆ρ

∂t
= −ρ0∇ · v , (18-31b)

∆p =
K0

ρ0
∆ρ− ζ∇ · v . (18-31c)

The last equation has been obtained from (18-27) by expanding to first order in
the small quantities, and using that the equilibrium bulk modulus is K0 = ρ∂p/∂ρ
for ρ = ρ0.

Differentiating the second equation after time and making use of the first, we
obtain

∂2∆ρ

∂t2
= ∇2∆p− 4

3
η∇2∇ · v = ∇2∆p +

4
3

η

ρ0
∇2 ∂∆ρ

∂t
.

Now substituting the pressure correction from the third equation, we arrive at
the following equation for the density corrections,

∂2∆ρ

∂t2
=

K0

ρ0
∇2∆ρ +

ζ + 4
3η

ρ0
∇2 ∂∆ρ

∂t
. (18-32)

If the last term on the right hand side were absent, this would be a standard wave
equation of the form (16-6) describing free density (or pressure) waves with phase
velocity c0 =

√
K0/ρ0. It is the last term which causes viscous attenuation.

The ratio of the coefficients of the first to the second terms has dimension of
inverse time and defines a circular frequency scale,

ω0 =
K0

ζ + 4
3η

=
c2
0ρ0

ζ + 4
3η

. (18-33)
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Taking ζ ∼ η, the right hand side is of the order of ω0 ≈ 3 × 109 s−1 in air and
ω0 ≈ 1012 s−1 in water.In terms of c0 and ω0, the wave equation may now be
written more conveniently,

1
c2
0

∂2∆ρ

∂t2
= ∇2∆ρ +

1
ω0

∇2 ∂∆ρ

∂t
. (18-34)

The time derivative in the last term is of order ω∆ρ for a wave with circular
frequency ω, and in view of the huge values of the viscous frequency scale ω0,
the ratio of the terms ω/ω0 will be small, implying that attenuation is weak for
normal sound, including ultrasound in the megahertz region.

Damped plane wave

Let us assume that a wave is created by an infinitely extended plane, a “loud-
speaker”, situated at x = 0 and oscillating in the x-direction with a small am-
plitude at a definite circular frequency ω. The fluid near the plate has to follow
the plate and will be alternately compressed and expanded, thereby generating
a damped density wave of the form,

∆ρ = ρ1e
−κx cos(kx− ωt) , (18-35)

where ρ1 ¿ ρ0 is the small density amplitude, k is the wave number, and κ is

x

Ρ

Damped density wave.the viscous amplitude attenuation coefficient. In view of the weak attenuation of
normal sound, we expect that κ/k ∼ ω/ω0 ¿ 1. Inserting this wave into (18-34),
we get to lowest order in both κ and ω/ω0,

−ω2

c2
0

cos(kx− ωt) = −k2 cos(kx− ωt) + 2κk sin(kx− ωt)− k2 ω

ω0
sin(kx− ωt) .

This can only be fulfilled when the wave number has the usual free-wave relation
to frequency, k = ω/c0, and

κ =
kω

2ω0
=

ω2

2ω0c0
=

ω2

2ρ0c3
0

(
ζ +

4
3
η

)
(18-36)

The viscous amplitude attenuation coefficient grows quadratically with the fre-
quency, causing high frequency sound to be much more attenuated by viscosity
than low frequency sound. In air the viscous attenuation length determined by
this expression is huge, about κ−1 ≈ 50 km at a frequency of 1000 Hz, but just
κ−1 ≈ 5 cm at 1 MHz (diagnostic imaging typically uses ultrasound between 1
and 15 MHz). This is also what makes measurements of the attenuation coeffi-
cient much easier at high frequencies. From the viscous attenuation coefficient
one may in principle extract the value of the bulk viscosity, but this is compli-
cated by several other fundamental mechanisms that also attenuate sound, such
as thermal conductivity, and excitation of molecular rotations and vibrations.
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In the real atmosphere, many other effects contribute to the attenuation of
sound. First of all, sound is mostly emitted from point sources rather than from
infinitely extended vibrating planes, and that introduces a drop in amplitude
with distance. Other factors like humidity, dust, impurities, and turbulence also
contribute, in fact much more than viscosity at the relatively low frequencies that
human activities generate (see for example [16, appendix] for a discussion of the
basic physics of sound waves in gases).
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Problems

18.1 a) Show that in an ideal gas the density of molecules (molecules per unit of
volume) is

n =
NAp

RT
(18-37)

and find its value for normal temperature and pressure.
b) Show that in an ideal gas consisting of spherical molecules with diameter d the

mean free path between collisions is of the order of

λ ≈ 1

nπd2
(18-38)

Estimate its magnitude in air where the molecular diameter may be taken to be about
0.3 nm (the kinetic theory of gases actually reduces the mean free path by a factor of√

2).
c) Assume that the molecular velocity v0 = λ/τ is of the same order of magnitude

as the velocity of sound (the kinetic theory of gases actually makes it about a factor√
2 larger), and use this to estimate the viscosity of air.

18.2 Calculate the temperature dependence of the kinematic viscosity for an isen-
tropic gas. What is the exponent of the temperature it for monatomic, diatomic, and
multiatomic gases.

18.3 A car with M = 1000 kg moving at U0 = 100 km/h suddenly hits a patch of
ice and begins to slide. The total contact area between the wheels and the water is
A = 3200 cm2 and it is observed to slide to a full stop in about 300 m. Calculate the
thickness of the water layer. Discuss whether it is a reasonable value.

18.4 Consider planar momentum diffusion (page 333) and assume that the flow of the
“river” vanishes fast at infinity, as in the Gaussian case. a) Show that for any river flow
the total flux of fluid in the z-direction is independent of time. b) Show that the total
momentum per unit of length in the z-direction is likewise constant. c) Calculate the
kinetic energy per unit of length in the z-direction as a function of time in the Gaussian
case.

∗ 18.5 Show that the general solution to the momentum diffusion equation (18-5) is

vx(y, t) =
1

2
√

πνt

Z ∞

−∞
exp

�
− (y − y′)2

4νt

�
vx(y′, 0) dy′ (18-39)

Use this to show that any bounded initial velocity distribution becomes Gaussian for
|y| → ∞.

18.6 a) Show that the average of a unit vector n over all directions obeys

〈ninj〉 =
1

3
δij (18-40)

b) Use this to show that the average pressure 9-12 is also the average of the normal
stress acting on an arbitrary surface element in a fluid.
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18.7 Estimate the Reynolds number for a) an ocean current, b) a water fall, c) a
weather cyclone, d) a hurricane, e) a tornado, f) lava running down a mountainside,
and g) plate tectonic motion.
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