
Chapter 5

Green Functions

In this chapter we will study strategies for solving the inhomogeneous linear
differential equation Ly = f . The tool we use is the Green function, which
is an integral kernel representing the inverse operator L−1. Apart from their
use in solving inhomogeneous equations, Green functions play an important
role in many areas of physics.

5.1 Inhomogeneous linear equations

We wish to solve Ly = f for y. Before we set about doing this, we should
ask ourselves whether a solution exists, and, if it does, whether it is unique.
The answers to these questions are summarized by the Fredholm alternative.

5.1.1 Fredholm alternative

The Fredholm alternative for operators on a finite-dimensional vector space
is discussed in detail in the appendix on linear algebra. You will want to
make sure that you have read and understood this material. Here, we merely
restate the results.

Let V be finite-dimensional vector space equipped with an inner product,
and let A be a linear operator A : V → V on this space. Then

I. Either
i) Ax = b has a unique solution,

or
ii) Ax = 0 has a non-trivial solution.
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II. If Ax = 0 has n linearly independent solutions, then so does A†x = 0.
III. If alternative ii) holds, then Ax = b has no solution unless b is perpen-

dicular to all solutions of A†x = 0.
What is important for us in the present chapter is that this result continues
to hold for linear differential operators L on a finite interval — provided that
we define L† as in the previous chapter, and provided the number of boundary
conditions is equal to the order of the equation.

If the number of boundary conditions is not equal to the order of the
equation then the number of solutions to Ly = 0 and L†y = 0 will differ in
general. It is still true, however, that Ly = f has no solution unless f is
perpendicular to all solutions of L†y = 0.
Example: As an illustration of what happens when an equation with too
many boundary conditions, consider

Ly =
dy

dx
, y(0) = y(1) = 0. (5.1)

Clearly Ly = 0 has only the trivial solution y ≡ 0. If a solution to Ly = f
exists, therefore, it will be unique.

We know that L† = −d/dx, with no boundary conditions on the functions
in its domain. The equation L†y = 0 therefore has the non-trivial solution
y = 1. This means that there should be no solution to Ly = f unless

〈1, f〉 =
∫ 1

0

f dx = 0. (5.2)

If this condition is satisfied then

y(x) =

∫ x

0

f(x) dx (5.3)

satisfies both the differential equation and the boundary conditions at x =
0, 1. If the condition is not satisfied, y(x) is not a solution, because y(1) 6= 0.

Initially we only solve Ly = f for homogeneous boundary conditions.
After we have understood how to do this, we will extend our methods to deal
with differential equations with inhomogeneous boundary conditions.

5.2 Constructing Green functions

We will solve Ly = f , a differential equation with homogeneous boundary
conditions, by finding an inverse operator L−1, so that y = L−1f . This
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inverse operator L−1 will be represented by an integral kernel

(L−1)x,ξ = G(x, ξ), (5.4)

with the property

LxG(x, ξ) = δ(x− ξ). (5.5)

Here, the subscript x on L indicates that L acts on the first argument, x, of
G. Then

y(x) =

∫
G(x, ξ)f(ξ) dξ (5.6)

will obey

Lxy =

∫
LxG(x, ξ)f(ξ) dξ =

∫
δ(x− ξ)f(ξ) dξ = f(x). (5.7)

The problem is how to construct G(x, ξ). There are three necessary ingredi-
ents:
• the function χ(x) ≡ G(x, ξ) must have some discontinuous behaviour

at x = ξ in order to generate the delta function;
• away from x = ξ, the function χ(x) must obey Lχ = 0;
• the function χ(x) must obey the homogeneous boundary conditions

required of y at the ends of the interval.
The last ingredient ensures that the resulting solution, y(x), obeys the bound-
ary conditions. It also ensures that the range of the integral operator G lies
within the domain of L, a prerequisite if the product LG = I is to make
sense. The manner in which these ingredients are assembled to construct
G(x, ξ) is best explained through examples.

5.2.1 Sturm-Liouville equation

We begin by constructing the solution to the equation

(p(x)y′)′ + q(x)y(x) = f(x) (5.8)

on the finite interval [a, b] with homogeneous self-adjoint boundary conditions

y′(a)

y(a)
= tan θL,

y′(b)

y(b)
= tan θR. (5.9)
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We therefore seek a function G(x, ξ) such that χ(x) = G(x, ξ) obeys

Lχ = (pχ′)′ + qχ = δ(x− ξ), (5.10)

The function χ(x) must also obey the homogeneous boundary conditions we
require of y(x).

Now (5.10) tells us that χ(x) must be continuous at x = ξ. For if not, the
two differentiations applied to a jump function would give us the derivative
of a delta function, and we want only a plain δ(x− ξ). If we write

G(x, ξ) = χ(x) =

{
AyL(x)yR(ξ), x < ξ,
AyL(ξ)yR(x), x > ξ,

(5.11)

then χ(x) is automatically continuous at x = ξ. We take yL(x) to be a
solution of Ly = 0, chosen to satisfy the boundary condition at the left hand
end of the interval. Similarly yR(x) should solve Ly = 0 and satisfy the
boundary condition at the right hand end. With these choices we satisfy
(5.10) at all points away from x = ξ.

To work out how to satisfy the equation exactly at the location of the
delta-function, we integrate (5.10) from ξ − ε to ξ + ε and find that

p(ξ)[χ′(ξ + ε)− χ′(ξ − ε)] = 1 (5.12)

With our product form for χ(x), this jump condition becomes

Ap(ξ)
(
yL(ξ)y

′
R(ξ)− y′L(ξ)yR(ξ)

)
= 1 (5.13)

and determines the constant A. We recognize the Wronskian W (yL, yR; ξ)
on the left hand side of this equation. We therefore have A = 1/(pW ) and

G(x, ξ) =

{
1
pW
yL(x)yR(ξ), x < ξ,

1
pW
yL(ξ)yR(x), x > ξ.

(5.14)

For the Sturm-Liouville equation the product pW is constant. This fact
follows from Liouville’s formula,

W (x) = W (0) exp

{
−
∫ x

0

(
p1

p0

)
dξ

}
, (5.15)

and from p1 = p′0 = p′ in the Sturm-Liouville equation. Thus

W (x) = W (0) exp
(
− ln[p(x)/p(0)]

)
= W (0)

p(0)

p(x)
. (5.16)
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The constancy of pW means that G(x, ξ) is symmetric:

G(x, ξ) = G(ξ, x). (5.17)

This is as it should be. The inverse of a symmetric matrix (and the real,
self-adjoint, Sturm-Liouville operator is the function-space analogue of a real
symmetric matrix) is itself symmetric.

The solution to
Ly = (p0y

′)′ + qy = f(x) (5.18)

is therefore

y(x) =
1

Wp

{
yL(x)

∫ b

x

yR(ξ)f(ξ) dξ + yR(x)

∫ x

a

yL(ξ)f(ξ) dξ

}
. (5.19)

Take care to understand the ranges of integration in this formula. In the
first integral ξ > x and we use G(x, ξ) ∝ yL(x)yR(ξ). In the second integral
ξ < x and we use G(x, ξ) ∝ yL(ξ)yR(x). It is easy to get these the wrong
way round.

Because we must divide by it in constructing G(x, ξ), it is necessary that
the Wronskian W (yL, yR) not be zero. This is reasonable. If W were zero
then yL ∝ yR, and the single function yR satisfies both LyR = 0 and the
boundary conditions. This means that the differential operator L has yR as
a zero-mode, so there can be no unique solution to Ly = f .
Example: Solve

−∂2
xy = f(x), y(0) = y(1) = 0. (5.20)

We have
yL = x

yR = 1− x

}
⇒ y′LyR − yLy′R ≡ 1. (5.21)

We find that

G(x, ξ) =

{
x(1− ξ), x < ξ,
ξ(1− x), x > ξ,

(5.22)

0 1ξ

Figure 5.1: The function χ(x) = G(x, ξ) .
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and

y(x) = (1− x)
∫ x

0

ξf(ξ) dξ + x

∫ 1

x

(1− ξ)f(ξ) dξ. (5.23)

5.2.2 Initial-value problems

Initial value problems are those boundary-value problems where all boundary
conditions are imposed at one end of the interval, instead of some conditions
at one end and some at the other. The same ingredients go into to construct-
ing the Green function, though.

Consider the problem

dy

dt
−Q(t)y = F (t), y(0) = 0. (5.24)

We seek a Green function such that

LtG(t, t′) ≡
(
d

dt
−Q(t)

)
G(t, t′) = δ(t− t′) (5.25)

and G(0, t′) = 0.

We need χ(t) = G(t, t′) to satisfy Ltχ = 0, except at t = t′, and need
χ(0) = 0. The unique solution of Ltχ = 0 with χ(0) = 0 is χ(t) ≡ 0. This
means that G(t, 0) = 0 for all t < t′. Near t = t′ we have the jump condition

G(t′ + ε, t′)−G(t′ − ε, t′) = 1. (5.26)

The unique solution is

G(t, t′) = θ(t− t′) exp

{∫ t

t′
Q(s)ds

}
, (5.27)

where θ(t− t′) is the Heaviside step distribution

θ(t) =

{
0, t < 0,
1, t > 0.

(5.28)
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1

t
t’

G(t,t’)

Figure 5.2: The Green functionG(t, t′) for the first-order initial value problem
.

Therefore

y(t) =

∫ ∞

0

G(t, t′)F (t′)dt′,

=

∫ t

0

exp

{∫ t

t′
Q(s) ds

}
F (t′) dt′

= exp

{∫ t

0

Q(s) ds

}∫ t

0

exp

{
−
∫ t′

0

Q(s) ds

}
F (t′) dt′. (5.29)

We earlier obtained this solution via variation of parameters.
Example: Forced, Damped, Harmonic Oscillator. An oscillator obeys the
equation

ẍ+ 2γẋ + (Ω2 + γ2)x = F (t). (5.30)

Here γ > 0 is the friction coeffecient. Assuming that the oscillator is at rest
at the origin at t = 0, we will show that

x(t) =

(
1

Ω

)∫ t

0

e−γ(t−τ) sin Ω(t− τ)F (τ)dτ. (5.31)

We seek a Green function G(t, τ) such that χ(t) = G(t, τ) obeys χ(0) =
χ′(0) = 0. Again, the unique solution of the differential equation with this
initial data is χ(t) ≡ 0. The Green function must be continuous at t = τ ,
but its derivative must be discontinuous there, jumping from zero to unity
to provide the delta function. Thereafter, it must satisfy the homogeneous
equation. The unique function satisfying all these requirements is

G(t, τ) = θ(t− τ) 1

Ω
e−γ(t−τ) sin Ω(t− τ). (5.32)
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τ
t

G(t, τ )

Figure 5.3: The Green function G(t, τ) for the damped oscillator problem .

Both these initial-value Green functions G(t, t′) are identically zero when
t < t′. This is because the Green function is the response of the system to a
kick at time t = t′, and in physical problems no effect comes before its cause.
Such Green functions are said to be causal .

Physics application: friction without friction—the Caldeira-Leggett
model in real time.

We now describe an application of the initial-value problem Green function
we found in the preceding example.

When studying the quantum mechanics of systems with friction, such as
the viscously damped oscillator, we need a tractable model of the dissipative
process. Such a model was introduced by Caldeira and Leggett.1 They
consider the Lagrangian

L =
1

2

(
Q̇2 − (Ω2 −∆Ω2)Q2

)
−Q

∑

i

fiqi +
∑

i

1

2

(
q̇2
i − ω2

i q
2
i

)
, (5.33)

which describes a macroscopic variable Q(t), linearly coupled to an oscillator
bath of very many simple systems qi representing the environment. The
quantity

∆Ω2 def
= −

∑

i

(
f 2
i

ω2
i

)
, (5.34)

1A. Caldiera, A. J. Leggett, Phys. Rev. Lett. 46 (1981) 211.
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is a counter-term that is inserted cancel the frequency shift

Ω2 → Ω2 −
∑

i

(
f 2
i

ω2
i

)
, (5.35)

caused by the coupling to the bath.2

The equations of motion are

Q̈+ (Ω2 −∆Ω2)Q +
∑

i

fiqi = 0,

q̈i + ω2
i qi + fiQ = 0. (5.36)

Using our initial-value Green function, we solve for the qi in terms of Q(t):

fiqi = −
∫ t

−∞

(
f 2
i

ωi

)
sinωi(t− τ)Q(τ)dτ. (5.37)

The resulting motion of the qi feeds back into the equation for Q to give

Q̈+ (Ω2 −∆Ω2)Q+

∫ t

−∞
F (t− τ)Q(τ) dτ = 0, (5.38)

where

F (t)
def
= −

∑

i

(
f 2
i

ωi

)
sin(ωit) (5.39)

is a memory function.
It is now convenient to introduce a spectral function

J(ω)
def
=
π

2

∑

i

(
f 2
i

ωi

)
δ(ω − ωi), (5.40)

which characterizes the spectrum of couplings and frequencies associated
with the oscillator bath. In terms of J(ω) we can write

F (t) = − 2

π

∫ ∞

0

J(ω) sin(ωt) dω. (5.41)

2The shift arises because a static Q displaces the bath oscillators so that fiqi =
−(f2

i /ω
2
i )Q. Substituting these values for the fiqi into the potential terms shows that, in

the absence of ∆Ω2Q2, the effective potential seen by Q would be

1

2
Ω2Q2 +Q

∑

i

fiqi +
∑

i

1

2
ω2

i q
2
i =

1

2

(
Ω2 −

∑

i

(
f2

i

ω2
i

))
Q2.
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Although J(ω) is defined as a sum of delta function “spikes,” the oscillator
bath contains a very large number of systems and this makes J(ω) effectively
a smooth function. This is just as the density of a gas (a sum of delta
functions at the location of the atoms) is macroscopically smooth. By taking
different forms for J(ω) we can represent a wide range of environments.
Caldeira and Leggett show that to obtain a friction force proportional to
Q̇ we should make J(ω) proportional to the frequency ω. To see how this
works, consider the choice

J(ω) = ηω

[
Λ2

Λ2 + ω2

]
, (5.42)

which is equal to ηω for small ω, but tends to zero when ω >> Λ. The
high-frequency cutoff Λ is introduced to make the integrals over ω converge.
With this cutoff

2

π

∫ ∞

0

J(ω) sin(ωt) dω =
2

2πi

∫ ∞

−∞

η ωΛ2eiωt

Λ2 + ω2
dω = sgn (t)ηΛ2e−Λ|t|. (5.43)

Therefore,
∫ t

−∞
F (t− τ)Q(τ) dτ = −

∫ t

−∞
ηΛ2e−Λ|t−τ |Q(τ) dτ

= −ηΛQ(t) + ηQ̇(t)− η

2Λ
Q̈(t) + · · · , (5.44)

where the second line results from expanding Q(τ) as a Taylor series

Q(τ) = Q(t) + (τ − t)Q̇(t) + · · · , (5.45)

and integrating term-by-term. Now,

−∆Ω2 ≡
∑

i

(
f 2
i

ω2
i

)
=

2

π

∫ ∞

0

J(ω)

ω
dω =

2

π

∫ ∞

0

ηΛ2

Λ2 + ω2
dω = ηΛ. (5.46)

The −∆Ω2Q counter-term thus cancels the leading term −ηΛQ(t) in (5.44),
which would otherwise represent a Λ-dependent frequency shift. After this
cancellation we can safely let Λ → ∞, and so ignore terms with negative
powers of the cutoff. The only surviving term in (5.44) is then ηQ̇. This
we substitute into (5.38), which becomes the equation for viscously damped
motion:

Q̈ + ηQ̇+ Ω2Q = 0. (5.47)
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The oscillators in the bath absorb energy but, unlike a pair of coupled oscil-
lators which trade energy rhythmically back-and-forth, the incommensurate
motion of the many qi prevents them from cooperating for long enough to
return any energy to Q(t).

5.2.3 Modified Green function

When the equation Ly = 0 has a non trivial-solution, there can be no unique
solution to Ly = f , but there still will be solutions provided f is orthogonal
to all solutions of L†y = 0.
Example: Consider

Ly ≡ −∂2
xy = f(x), y′(0) = y′(1) = 0. (5.48)

The equation Ly = 0 has one non-trivial solution, y(x) = 1. The operator
L is self-adjoint, L† = L, and so there will be solutions to Ly = f provided
〈1, f〉 =

∫ 1

0
f dx = 0.

We cannot define the the green function as a solution to

−∂2
xG(x, ξ) = δ(x− ξ), (5.49)

because
∫ 1

0
δ(x− ξ) dx = 1 6= 0, but we can seek a solution to

−∂2
xG(x, ξ) = δ(x− ξ)− 1 (5.50)

as the right-hand integrates to zero.
A general solution to −∂2

xy = −1 is

y = A+Bx +
1

2
x2, (5.51)

and the functions

yL = A+
1

2
x2,

yR = C − x+
1

2
x2, (5.52)

obey the boundary conditions at the left and right ends of the interval, re-
spectively. Continuity at x = ξ demands that A = C − ξ, and we are left
with

G(x, ξ) =

{
C − ξ + 1

2
x2, 0 < x < ξ

C − x + 1
2
x2, ξ < x < 1,

(5.53)
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There is no freedom left to impose the condition

G′(ξ − ε, ξ)−G′(ξ + ε, ξ) = 1, (5.54)

but it is automatically satisfied ! Indeed,

G′(ξ − ε, ξ) = ξ

G′(ξ + ε, ξ) = −1 + ξ. (5.55)

We may select a different value of C for each ξ, and a convenient choice
is

C =
1

2
ξ2 +

1

3
(5.56)

which makes G symmetric:

G(x, ξ) =

{
1
3
− ξ + x2+ξ2

2
, 0 < x < ξ

1
3
− x + x2+ξ2

2
, ξ < x < 1,

. (5.57)

It also makes
∫ 1

0
G(x, ξ) dx = 0.

ξ

Figure 5.4: The modified Green function.

The solution to Ly = f is

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ + A, (5.58)

where A is arbitrary.
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5.3 Applications of Lagrange’s identity

5.3.1 Hermiticity of Green functions

Earlier we noted the symmetry of the Green function for the Sturm-Liouville
equation. We will now establish the corresponding result for general differ-
ential operators.

Let G(x, ξ) obey LxG(x, ξ) = δ(x− ξ) with homogeneous boundary con-
ditions B, and let G†(x, ξ) obey L†

xG
†(x, ξ) = δ(x−ξ) with adjoint boundary

conditions B†. Then, from Lagrange’s identity, we have

[Q(G,G†)]ba =

∫ b

a

dx
{(
L†
xG

†(x, ξ)
)∗
G(x, ξ′)− (G†(x, ξ))∗LG(x, ξ′)

}

=

∫ b

a

dx
{
δ(x− ξ)G(x, ξ′)−

(
G†(x, ξ)

)∗
δ(x− ξ′)

}

= G(ξ, ξ′)−
(
G†(ξ′, ξ)

)∗
. (5.59)

Thus, provided [Q(G,G†)]ba = 0, which is indeed the case because the bound-
ary conditions for L, L† are mutually adjoint, we have

G†(ξ, x) =
(
G(x, ξ)

)∗
, (5.60)

and the Green functions, regarded as matrices with continuous rows and
columns, are Hermitian conjugates of one another.

Example: Let

L =
d

dx
, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = 0}. (5.61)

In this case G(x, ξ) = θ(x− ξ).
Now, we have

L† = − d

dx
, D(L) = {y, Ly ∈ L2[0, 1] : y(1) = 0} (5.62)

and G†(x, ξ) = θ(ξ − x).
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0 1 0 1

1 1

ξ ξ

Figure 5.5: G(x, ξ) = θ(x− ξ), and G†(x, ξ) = θ(ξ − x).

5.3.2 Inhomogeneous boundary conditions

Our differential operators have been defined with linear homogeneous bound-
ary conditions. We can, however, use them, and their Green-function in-
verses, to solve differential equations with inhomogeneous boundary condi-
tions.

Suppose, for example, we wish to solve

−∂2
xy = f(x), y(0) = a, y(1) = b. (5.63)

We already know the Green function for the homogeneous boundary-condition
problem with operator

L = −∂2
x, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = 0, y(1) = 0}. (5.64)

It is

G(x, ξ) =

{
x(1− ξ), x < ξ,
ξ(1− x), x > ξ.

(5.65)

Now we apply Lagrange’s identity to χ(x) = G(x, ξ) and y(x) to get

∫ 1

0

dx
{
G(x, ξ)

(
−∂2

xy(x)
)
− y(x)

(
−∂2

xG(x, ξ)
)}

= [G′(x, ξ)y(x)−G(x, ξ)y′(x)]10.

(5.66)
Here, as usual, G′(x, ξ) = ∂xG(x, ξ). The integral is equal to

∫
dx {G(x, ξ)f(x)− y(x)δ(x− ξ)} =

∫
G(x, ξ)f(x) dx− y(ξ), (5.67)

whilst the integrated-out bit is

−(1− ξ)y(0)− 0 y′(0)− ξy(1) + 0 y′(1). (5.68)
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Therefore, we have

y(ξ) =

∫
G(x, ξ)f(x) dx+ (1− ξ)y(0) + ξy(1). (5.69)

Here the term with f(x) is the particular integral, whilst the remaining terms
constitute the complementary function (obeying the differential equation
without the source term) which serves to satisfy the boundary conditions.
Observe that the arguments in G(x, ξ) are not in the usual order, but, in the
present example, this does not matter because G is symmetric.

When the operator L is not self-adjoint, we need to distinguish between
L and L†, and G and G†. We then apply Lagrange’s identity to the unknown
function u(x) and χ(x) = G†(x, ξ).
Example: We will use the Green-function method to solve the differential
equation

du

dx
= f(x), x ∈ [0, 1], u(0) = a. (5.70)

We can, of course, write down the answer to this problem directly, but it
is interesting to see how the general strategy produces the solution. We
first find the Green function G(x, ξ) for the operator with the corresponding
homogeneous boundary conditions. In the present case, this operator is

L = ∂x, D(L) = {u, Lu ∈ L2[0, 1] : u(0) = 0}, (5.71)

and the appropriate Green function is G(x, ξ) = θ(x − ξ). From G we then

read off the adjoint Green function as G†(x, ξ) =
(
G(ξ, x)

)∗
. In the present

example, we have G†(x,′ x) = θ(ξ − x). We now use Lagrange’s identity in
the form
∫ 1

0

dx
{(
L†
xG

†(x, ξ)
)∗
u(x)−

(
G†(x, ξ)

)∗
Lxu(x)

}
=
[
Q
(
G†, u

)]1
0
. (5.72)

In all cases, the left hand side is equal to
∫ 1

0

dx
{
δ(x− ξ)u(x)−GT (x, ξ)f(x)

}
, (5.73)

where T denotes transpose, GT (x, ξ) = G(ξ, x). The left hand side is there-
fore equal to

u(ξ)−
∫ 1

0

dxG(ξ, x)f(x). (5.74)
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The right hand side depends on the details of the problem. In the present
case, the integrated out part is

[
Q(G†, u)

]1
0

= −
[
GT (x, ξ)u(x)

]1
0

= u(0). (5.75)

At the last step we have used the specific form GT (x, ξ) = θ(ξ − x) to find
that only the lower limit contributes. The end result is therefore the expected
one:

u(y) = u(0) +

∫ y

0

f(x) dx. (5.76)

Variations of this strategy enable us to solve any inhomogeneous boundary-
value problem in terms of the Green function for the corresponding homoge-
neous boundary-value problem.

5.4 Eigenfunction expansions

Self-adjoint operators possess a complete set of eigenfunctions, and we can
expand the Green function in terms of these. Let

Lϕn = λnϕn. (5.77)

Let us further suppose that none of the λn are zero. Then the Green function
has the eigenfunction expansion

G(x, ξ) =
∑

n

ϕn(x)ϕ
∗
n(ξ)

λn
. (5.78)

That this is so follows from

Lx

(
∑

n

ϕn(x)ϕ
∗
n(ξ)

λn

)
=

∑

n

(
Lxϕn(x)

)
ϕ∗
n(ξ)

λn

=
∑

n

λnϕn(x)ϕ
∗
n(ξ)

λn

=
∑

n

ϕn(x)ϕ
∗
n(ξ)

= δ(x− ξ). (5.79)
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Example: : Consider our familiar exemplar

L = −∂2
x, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = y(1) = 0}, (5.80)

for which

G(x, ξ) =

{
x(1− ξ), x < ξ,
ξ(1− x), x > ξ.

(5.81)

Computing the Fourier series shows that

G(x, ξ) =

∞∑

n=1

(
2

n2π2

)
sin(nπx) sin(nπξ). (5.82)

Modified Green function

When one or more of the eigenvalues is zero, a modified Green function is
obtained by simply omitting the corresponding terms from the series.

Gmod(x, ξ) =
∑

λn 6=0

ϕn(x)ϕ
∗
n(ξ)

λn
. (5.83)

Then

LxGmod(x, ξ) = δ(x− ξ)−
∑

λn=0

ϕn(x)ϕ
∗
n(ξ). (5.84)

We see that this Gmod is still hermitian, and, as a function of x, is orthogonal
to the zero modes. These are the properties we elected when constructing
the modified Green function in equation (5.57).

5.5 Analytic properties of Green functions

In this section we study the properties of Green functions considered as
functions of a complex variable. Some of the formulæ are slightly easier to
derive using contour integral methods, but these are not necessary and we will
not use them here. The only complex-variable prerequisite is a familiarity
with complex arithmetic and, in particular, knowledge of how to take the
logarithm and the square root of a complex number.
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5.5.1 Causality implies analyticity

Consider a Green function of the form G(t − τ) and possessing the causal
property that G(t − τ) = 0, for t < τ . If the improper integral defining its
Fourier transform,

G̃(ω) =

∫ ∞

0

eiωtG(t) dt
def
= lim

T→∞

{∫ T

0

eiωtG(t) dt

}
, (5.85)

converges for real ω, it will converge even better when ω has a positive
imaginary part. Consequently G̃(ω) will be a well-behaved function of the
complex variable ω everywhere in the upper half of the complex ω plane.
Indeed, it will be analytic there, meaning that its Taylor series expansion
about any point actually converges to the function. For example, the Green
function for the damped harmonic oscillator

G(t) =

{
1
Ω
e−γt sin(Ωt), t > 0,

0, t < 0,
(5.86)

has Fourier transform

G̃(ω) =
1

Ω2 − (ω + iγ)2
, (5.87)

which is always finite in the upper half-plane, although it has pole singulari-
ties at ω = −iγ ± Ω in the lower half-plane.

The only way that the Fourier transform G̃ of a causal Green function can
have a pole singularity in the upper half-plane is if G contains a exponential
factor growing in time, in which case the system is unstable to perturbations
(and the real-frequency Fourier transform does not exist). This observation
is at the heart of the Nyquist criterion for the stability of linear electronic
devices.

Inverting the Fourier transform, we have

G(t) =

∫ ∞

−∞

1

Ω2 − (ω + iγ)2
e−iωt

dω

2π
= θ(t)

1

Ω
e−γt sin(Ωt). (5.88)

It is perhaps surprising that this integral is identically zero if t < 0, and
non-zero if t > 0. This is one of the places where contour integral methods
might cast some light, but because we have confidence in the Fourier inversion
formula, we know that it must be correct.
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Remember that in deriving (5.88) we have explicitly assumed that the
damping coefficient γ is positive. It is important to realize that reversing the
sign of γ on the left-hand side of (5.88) does more than just change e−γt → eγt

on the right-hand side. Näıvely setting γ → −γ on both sides of (5.88) gives
an equation that cannot possibly be true. The left-hand side would be the
Fourier transform of a smooth function, and the Riemann-Lebesgue lemma
tells us that such a Fourier transform must become zero when |t| → ∞. The
right-hand side, to the contrary, would be a function whose oscillations grow
without bound as t becomes large and positive.

To find the correct equation, observe that we can legitimately effect the
sign-change γ → −γ by first complex-conjugating the integral and then
changing t to −t. Performing these two operations on both sides of (5.88)
leads to ∫ ∞

−∞

1

Ω2 − (ω − iγ)2
e−iωt

dω

2π
= −θ(−t) 1

Ω
eγt sin(Ωt) (5.89)

The new right-hand side represents an exponentially growing oscillation that
is suddenly silenced by the kick at t = 0.

ιγ= +ιε ιγ=−ιε

t t
t=0 t=0

Figure 5.6: The effect on G(t), the Green function of an undamped oscillator,
of changing iγ from +iε to −iε.

The effect of taking the damping parameter γ from an infitesimally small
postive value ε to an infinitesimally small negative value −ε is therefore to
turn the causal Green function (no motion before it is started by the delta-
function kick) of the undamped oscillator into an anti-causal Green function
(no motion after it is stopped by the kick). Ultimately, this is because the the
differential operator corresponding to a harmonic oscillator with initial -value
data is not self-adjoint, and its adjoint operator corresponds to a harmonic
oscillator with final -value data.
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This discontinuous dependence on an infinitesimal damping parameter is
the subject of the next few sections.

Physics application: Caldeira-Leggett in frequency space

If we write the Caldeira-Leggett equations of motion (5.36) in Fourier fre-
quency space by setting

Q(t) =

∫ ∞

−∞

dω

2π
Q(ω)e−iωt, (5.90)

and

qi(t) =

∫ ∞

−∞

dω

2π
qi(ω)e−iωt, (5.91)

we have (after including an external force Fext to drive the system)
(
−ω2 + (Ω2 −∆Ω2)

)
Q(ω)−

∑

i

fiqi(ω) = Fext(ω),

(−ω2 + ω2
i )qi(ω) + fiQ(ω) = 0. (5.92)

Eliminating the qi, we obtain

(
−ω2 + (Ω2 −∆Ω2)

)
Q(ω)−

∑

i

f 2
i

ω2
i − ω2

Q(ω) = Fext(ω). (5.93)

As before, sums over the index i are replaced by integrals over the spectral
function ∑

i

f 2
i

ω2
i − ω2

→ 2

π

∫ ∞

0

ω′J(ω′)

ω′2 − ω2
dω′, (5.94)

and

−∆Ω2 ≡
∑

i

(
f 2
i

ω2
i

)
→ 2

π

∫ ∞

0

J(ω′)

ω′ dω′. (5.95)

Then

Q(ω) =

(
1

Ω2 − ω2 + Π(ω)

)
Fext(ω), (5.96)

where the self-energy Π(ω) is given by

Π(ω) =
2

π

∫ ∞

0

{
J(ω′)

ω′ −
ω′J(ω′)

ω′2 − ω2

}
dω′ = −ω2 2

π

∫ ∞

0

J(ω′)

ω′(ω′2 − ω2)
dω′.

(5.97)
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The expression

G(ω) ≡ 1

Ω2 − ω2 + Π(ω)
(5.98)

a typical response function. Analogous objects occur in all branches of
physics.

For viscous damping we know that J(ω) = ηω. Let us evaluate the
integral occuring in Π(ω) for this case:

I(ω) =

∫ ∞

0

dω′

ω′2 − ω2
. (5.99)

We will initially assume that ω is positive. Now,

1

ω′2 − ω2
=

1

2ω

(
1

ω′ − ω −
1

ω′ + ω

)
, (5.100)

so

I(ω) =

[
1

2ω

(
ln(ω′ − ω)− ln(ω′ + ω)

)]∞

ω′=0

. (5.101)

At the upper limit we have ln
(
(∞− ω)/(∞ + ω)

)
= ln 1 = 0. The lower

limit contributes

− 1

2ω

(
ln(−ω)− ln(ω)

)
. (5.102)

To evaluate the logarithm of a negative quantity we must use

lnω = ln |ω|+ i argω, (5.103)

where we will take argω to lie in the range −π < argω < π.

Im

Re

arg

ω

(−ω)

ω
−ω

ω

Figure 5.7: When ω has a small positive imaginary part, arg (−ω) ≈ −π.
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To get an unambiguous answer, we need to give ω an infinitesimal imaginary
part ±iε. Depending on the sign of this imaginary part, we find that

I(ω ± iε) = ± iπ
2ω
. (5.104)

This formula remains true when the real part of ω is negative, and so

Π(ω ± iε) = ∓iηω. (5.105)

Now the frequency-space version of

Q̈(t) + ηQ̇+ Ω2Q = Fext(t) (5.106)

is
(−ω2 − iηω + Ω2)Q(ω) = Fext(ω), (5.107)

so we must opt for the small shift in ω that leads to Π(ω) = −iηω. This
means that we must regard ω as having a positive infinitesimal imaginary
part, ω → ω+ iε. This imaginary part is a good and needful thing: it effects
the replacement of the ill-defined singular integrals

G(t)
?
=

∫ ∞

0

1

ω2
i − ω2

e−iωt dω, (5.108)

which arise as we transform back to real time, with the unambiguous expres-
sions

Gε(t) =

∫ ∞

0

1

ω2
i − (ω + iε)2

e−iωt dω. (5.109)

The latter, we know, give rise to properly causal real-time Green functions.

5.5.2 Plemelj formulæ

The functions we are meeting can all be cast in the form

f(ω) =
1

π

∫ b

a

ρ(ω′)

ω′ − ω dω
′. (5.110)

If ω lies in the integration range [a, b], then we divide by zero as we integrate
over ω′ = ω. We ought to avoid doing this, but this interval is often exactly
where we desire to evaluate f . As before, we evade the division by zero by
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giving ω an infintesimally small imaginary part: ω → ω ± iε. We can then
apply the Plemelj formulæ, named for the Slovenian mathematician Josip
Plemelj, which say that

1

2

(
f(ω + iε)− f(ω − iε)

)
= iρ(ω),

1

2

(
f(ω + iε) + f(ω − iε)

)
=

1

π
P

∫

Γ

ρ(ω′)

ω′ − ω dω
′. (5.111)

As explained in section 2.3.2, the “P” in front of the integral stands for
principal part . Recall that it means that we are to delete an infinitesimal
segment of the ω′ integral lying symmetrically about the singular point ω ′ =
ω.

a b
Im ω

Re ω ω

Figure 5.8: The analytic function f(ω) is discontinuous across the real axis
between a and b.

The Plemelj formula mean that the otherwise smooth and analytic func-
tion f(ω) is discontinuous across the real axis between a and b. If the dis-
continuity ρ(ω) is itself an analytic function then the line joining the points
a and b is a branch cut , and the endpoints of the integral are branch-point
singularities of f(ω).

The reason for the discontinuity may be understood by considering figure
5.9. The singular integrand is a product of ρ(ω′) with

1

ω′ − (ω ± iε) =
ω′ − ω

(ω′ − ω)2 + ε2
± iε

(ω′ − ω)2 + ε2
. (5.112)

The first term on the right is a symmetrically cut-off version 1/(ω ′− ω) and
provides the principal part integral. The the second term sharpens and tends
to the delta function ±iπδ(ω′− ω) as ε→ 0, and so gives ±iπρ(ω). Because
of this explanation, the Plemelj equations are commonly encoded in physics
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papers via the “iε” cabbala

1

ω′ − (ω ± iε) = P

(
1

ω′ − ω

)
± iπδ(ω′ − ω). (5.113)

.

ω
ω

Im gRe g

ω ω

Figure 5.9: Sketch of the real and imaginary parts of g(ω ′) = 1/(ω′−(ω+iε)).

If ρ is real, as it often is, then f(ω+iη) =
(
f(ω−iη)

)∗
. The discontinuity

across the real axis is then purely imaginary, and

1

2

(
f(ω + iε) + f(ω − iε)

)
(5.114)

is the real real part of f . In this case we can write (5.110) as

Re f(ω) =
1

π
P

∫ b

a

Im f(ω′)

ω′ − ω dω′. (5.115)

This formula is typical of the relations linking the real and imaginary parts
of causal response functions.

A practical example of such a relation is provided by the complex, frequency-
dependent, refractive index , n(ω), of a medium. This is defined so that a
travelling electromagnetic wave takes the form

E(x, t) = E0 e
in(ω)kx−iωt. (5.116)

Here, k = ω/c is the in vacuuo wavenumber. We can decompose n into its
real and imaginary parts:

n(ω) = nR + inI

= nR(ω) +
i

2|k|γ(ω), (5.117)
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where γ is the extinction coefficient, defined so that the intensity falls off
as I = I0 exp(−γx). A non-zero γ can arise from either energy absorbtion
or scattering out of the forward direction. For the refractive index, the
function f(ω) = n(ω) − 1 can be written in the form of (5.110), and, using
n(−ω) = n∗(ω), this leads to the Kramers-Kronig relation

nR(ω) = 1 +
c

π
P

∫ ∞

0

γ(ω′)

ω′2 − ω2
dω′. (5.118)

Formulæ like this will be rigorously derived in chapter 18 by the use of
contour-integral methods.

5.5.3 Resolvent operator

Given a differential operator L, we define the resolvent operator to be Rλ ≡
(L− λI)−1. The resolvent is an analytic function of λ, except when λ lies in
the spectrum of L.

We expand Rλ in terms of the eigenfunctions as

Rλ(x, ξ) =
∑

n

ϕn(x)ϕ
∗
n(ξ)

λn − λ
. (5.119)

When the spectrum is discrete, the resolvent has poles at the eigenvalues
L. When the operator L has a continuous spectrum, the sum becomes an
integral:

Rλ(x, ξ) =

∫

µ∈σ(L)

ρ(µ)
ϕµ(x)ϕ

∗
µ(ξ)

µ− λ dµ, (5.120)

where ρ(µ) is the eigenvalue density of states. This is of the form that
we saw in connection with the Plemelj formulæ. Consequently, when the
spectrum comprises segements of the real axis, the resulting analytic function
Rλ will be discontinuous across the real axis within them. The endpoints
of the segements will branch point singularities of Rλ, and the segements
themselves, considered as subsets of the complex plane, are the branch cuts.

The trace of the resolvent TrRλ is defined by

TrRλ =

∫
dx {Rλ(x, x)}

=

∫
dx

{
∑

n

ϕn(x)ϕ
∗
n(x)

λn − λ

}
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=
∑

n

1

λn − λ

→
∫

ρ(µ)

µ− λ dµ. (5.121)

Applying Plemelj to Rλ, we have

Im
[
lim
ε→0

{
TrRλ+iε

}]
= πρ(λ). (5.122)

Here, we have used that fact that ρ is real, so

TrRλ−iε =
(
TrRλ+iε

)∗
. (5.123)

The non-zero imaginary part therefore shows that Rλ is discontinuous across
the real axis at points lying in the continuous spectrum.
Example: Consider

L = −∂2
x +m2, D(L) = {y, Ly ∈ L2[−∞,∞]}. (5.124)

As we know, this operator has a continuous spectrum, with eigenfunctions

ϕk =
1√
L
eikx. (5.125)

Here, L is the (very large) length of the interval. The eigenvalues are E =
k2 + m2, so the spectrum is all positive numbers greater than m2. The
momentum density of states is

ρ(k) =
L

2π
. (5.126)

The completeness relation is
∫ ∞

−∞

dk

2π
eik(x−ξ) = δ(x− ξ), (5.127)

which is just the Fourier integral formula for the delta function.
The Green function for L is

G(x− y) =

∫ ∞

−∞
dk

(
dn

dk

)
ϕk(x)ϕ

∗
k(y)

k2 +m2
=

∫ ∞

−∞

dk

2π

eik(x−y)

k2 +m2
=

1

2m
e−m|x−y|.

(5.128)
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−λ

Im

Re

λ

λ
arg(−λ)/2

λ

−λ

Figure 5.10: If Imλ > 0, and with the branch cut for
√
z in its usual place

along the negative real axis, then
√
−λ has negative imaginary part and

positive real part.

We can use the same calculation to look at the resolvent Rλ = (−∂2
x − λ)−1.

Replacing m2 by −λ, we have

Rλ(x, y) =
1

2
√
−λ

e−
√
−λ|x−y|. (5.129)

To appreciate this expression, we need to know how to evaluate
√
z where

z is complex. We write z = |z|eiφ where we require −π < φ < π. We now
define √

z =
√
|z|eiφ/2. (5.130)

When we evaluate
√
z for z just below the negative real axis then this defini-

tion gives −i
√
|z|, and just above the axis we find +i

√
|z|. The discontinuity

means that the negative real axis is a branch cut for the the square-root func-
tion. The

√
−λ’s appearing in Rλ therefore mean that the positive real axis

will be a branch cut for Rλ. This branch cut therefore coincides with the
spectrum of L, as promised earlier.
If λ is positive and we shift λ→ λ+ iε then

1

2
√
−λ

e−
√
−λ|x−y| → i

2
√
λ
e+i

√
λ|x−y|−ε|x−y|/2

√
λ. (5.131)

Notice that this decays away as |x − y| → ∞. The square root retains a
positive real part when λ is shifted to λ− iε, and so the decay is still present:

1

2
√
−λe

−
√
−λ|x−y| → − i

2
√
λ
e−i

√
λ|x−y|−ε|x−y|/2

√
λ. (5.132)
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In each case, with λ either immediately above or immediately below the
cut, the small imaginary part tempers the oscillatory behaviour of the Green
function so that χ(x) = G(x, y) is square integrable and remains an element
of L2[R].

We now take the trace of R by setting x = y and integrating:

TrRλ+iε = iπ
L

2π
√
|λ|
. (5.133)

Thus,

ρ(λ) = θ(λ)
L

2π
√
|λ|
, (5.134)

which coincides with our direct calculation.

Example: Let

L = −i∂x, D(L) = {y, Ly ∈ L2[R]}. (5.135)

This has eigenfunctions eikx with eigenvalues k. The spectrum is therefore
the entire real line. The local eigenvalue density of states is 1/2π. The
resolvent is therefore

(−i∂x − λ)−1
x,ξ =

1

2π

∫ ∞

−∞
eik(x−ξ)

1

k − λdk. (5.136)

To evaluate this, first consider the Fourier transforms of

F1(x) = θ(x)e−κx,

F2(x) = −θ(−x)eκx, (5.137)

where κ is a positive real number.

xx

1

−1

Figure 5.11: The functions F1(x) = θ(x)e−κx and F2(x) = −θ(−x)eκx .
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We have ∫ ∞

−∞

{
θ(x)e−κx

}
e−ikx dx =

1

i

1

k − iκ , (5.138)

∫ ∞

−∞

{
−θ(−x)eκx

}
e−ikx dx =

1

i

1

k + iκ
. (5.139)

Inverting the transforms gives

θ(x)e−κx =
1

2πi

∫ ∞

−∞

1

k − iκe
ikx dk,

−θ(−x)eκx =
1

2πi

∫ ∞

−∞

1

k + iκ
eikx dk. (5.140)

These are important formulæ in their own right, and you should take care
to understand them. Now we apply them to evaluating the integral defining
Rλ.

If we write λ = µ+ iν, we find

1

2π

∫ ∞

−∞
eik(x−ξ)

1

k − λ dk =

{
iθ(x− ξ)eiµ(x−ξ)e−ν(x−ξ), ν > 0,
−iθ(ξ − x)eiµ(x−ξ)e−ν(x−ξ), ν < 0,

(5.141)

In each case, the resolvent is ∝ eiλx away from ξ, and has jump of +i at
x = ξ so as produce the delta function. It decays either to the right or to
the left, depending on the sign of ν. The Heaviside factor ensures that it is
multiplied by zero on the exponentially growing side of e−νx, so as to satisfy
the requirement of square integrability.

Taking the trace of this resolvent is a little problematic. We are to set x =
ξ and integrate — but what value do we associate with θ(0)? Remembering
that Fourier transforms always give to the mean of the two values at a jump
discontinuity, it seems reasonable to set θ(0) = 1

2
. With this definition, we

have

TrRλ =

{
i
2
L, Imλ > 0,

− i
2
L, Imλ < 0.

(5.142)

Our choice is therefore compatible with TrRλ+iε = πρ = L/2π. We have
been lucky. The ambiguous expression θ(0) is not always safely evaluated as
1/2.
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5.6 Locality and the Gelfand-Dikii equation

The answers to many quantum physics problems can be expressed either as
sums over wavefunctions or as expressions involving Green functions. One
of the advantages of writing the answer in terms of Green functions is that
these typically depend only on the local properties of the differential operator
whose inverse they are. This locality is in contrast to the individual wave-
functions and their eigenvalues, both of which are sensitive to the distant
boundaries. Since physics is usually local, it follows that the Green function
provides a more efficient route to the answer.

By the Green function being local we mean that its value for x, ξ near
some point can be computed in terms of the coefficients in the differential
operator evaluated near this point. To illustrate this claim, consider the
Green function G(x, ξ) for the Schrödinger operator −∂2

x + q(x) + λ on the
entire real line. We will show that there is a not exactly obvious (but easy
to obtain once you know the trick) local gradient expansion for the diagonal
elements D(x) ≡ G(x, x). These elements are often all that is needed in
physics. We begin by recalling that we can write

G(x, ξ) ∝ u(x)v(ξ)

where u(x), v(x) are solutions of (−∂2
x + q(x) + λ)y = 0 satisfying suitable

boundary conditions to the right and left respectively. We setD(x) = G(x, x)
and differentiate three times with respect to x. We find

∂3
xD(x) = u(3)v + 3u′′v′ + 3u′v′′ + uv(3)

= (∂x(q + λ)u) v + 3(q + λ)∂x(uv) + (∂x(q + λ)v)u.

Here, in passing from the first to second line, we have used the differential
equation obeyed by u and v. We can re-express the second line as

(q∂x + ∂xq −
1

2
∂3
x)D(x) = −2λ∂xD(x). (5.143)

This relation is known as the Gelfand-Dikii equation. Using it we can find
an expansion for the diagonal element D(x) in terms of q and its derivatives.
We begin by observing that for q(x) ≡ 0 we know that D(x) = 1/(2

√
λ). We

therefore conjecture that we can expand

D(x) =
1

2
√
λ

(
1− b1(x)

2λ
+
b2(x)

(2λ)2
+ · · ·+ (−1)n

bn(x)

(2λ)n
+ · · ·

)
.
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If we insert this expansion into (5.143) we see that we get the recurrence
relation

(q∂x + ∂xq −
1

2
∂3
x)bn = ∂xbn+1. (5.144)

We can therefore find bn+1 from bn by differentiation followed by a single
integration. Remarkably, ∂xbn+1 is always the exact derivative of a polynomal
in q and its derivatives. Further, the integration constants must be be zero
so that we recover the q ≡ 0 result. If we carry out this process, we find

b1(x) = q(x),

b2(x) =
3 q(x)2

2
− q′′(x)

2
,

b3(x) =
5 q(x)3

2
− 5 q′(x)2

4
− 5 q(x) q′′(x)

2
+
q(4)(x)

4
,

b4(x) =
35 q(x)4

8
− 35 q(x) q′(x)2

4
− 35 q(x)2 q′′(x)

4
+

21 q′′(x)2

8

+
7 q′(x) q(3)(x)

2
+

7 q(x) q(4)(x)

4
− q(6)(x)

8
, (5.145)

and so on. (Note how the terms in the expansion are graded: Each bn
is homogeneous in powers of q and its derivatives, provided we count two
x derivatives as being worth one q(x).) Keeping a few terms in this series
expansion can provide an effective approximation for G(x, x), but, in general,
the series is not convergent, being only an asymptotic expansion for D(x).

A similar strategy produces expansions for the diagonal element of the
Green function of other one-dimensional differential operators. Such gradient
expansions also exist in in higher dimensions but the higher-dimensional
Seeley-coefficient functions are not as easy to compute. Gradient expansions
for the off-diagonal elements also exist, but, again, they are harder to obtain.

5.7 Further exercises and problems

Here are some further exercises that are intended to illustrate the material
of this chapter:

Exercise 5.1: Fredholm Alternative. A heavy elastic bar with uniform mass
m per unit length lies almost horizontally. It is supported by a distribution of
upward forces F (x).
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F(x)

y

x

g

Figure 5.12: Elastic bar

The shape of the bar, y(x), can be found by minimizing the energy

U [y] =

∫ L

0

{
1

2
κ(y′′)2 − (F (x) −mg)y

}
dx.

• Show that this minimization leads to the equation

L̂y ≡ κd
4y

dx4
= F (x)−mg, y′′ = y′′′ = 0 at x = 0, L.

• Show that the boundary conditions are such that the operator L̂ is self-
adjoint with respect to an inner product with weight function 1.

• Find the zero modes which span the null space of L̂.
• If there are n linearly independent zero modes, then the codimension of

the range of L̂ is also n. Using your explicit solutions from the previous
part, find the conditions that must be obeyed by F (x) for a solution of
L̂y = F −mg to exist. What is the physical meaning of these conditions?

• The solution to the equation and boundary conditions is not unique. Is
this non-uniqueness physically reasonable? Explain.

Exercise 5.2: Flexible rod again. A flexible rod is supported near its ends by
means of knife edges that constrain its position, but not its slope or curvature.
It is acted on by by a force F (x).

The deflection of the rod is found by solving the the boundary value problem

d4y

dx4
= F (x), y(0) = y(1) = 0, y′′(0) = y′′(1) = 0.

We wish to find the Green function G(x, ξ) that facilitates the solution of this
problem.

a) If the differential operator and domain (boundary conditions) above is
denoted by L, what is the operator and domain for L†? Is the problem
self-adjoint?
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F(x)x=0 x=1

y

x

Figure 5.13: Simply supported rod.

b) Are there any zero-modes? Does F have to satisfy any conditions for the
solution to exist?

c) Write down the conditions, if any, obeyed by G(x, ξ) and its derivatives
∂xG(x, ξ), ∂2

xxG(x, ξ), ∂3
xxxG(x, ξ) at x = 0, x = ξ, and x = 1.

d) Using the conditions above, find G(x, ξ). (This requires some boring
algebra — but if you start from the “jump condition” and work down,
it can be completed in under a page)

e) Is your Green function symmetric (G(x, x) = G(ξ, x))? Is this in ac-
cord with the self-adjointness or not of the problem? (You can use this
property as a check of your algebra.)

f) Write down the integral giving the general solution of the boundary value
problem. Assume, if necessary, that F (x) is in the range of the differential
operator. Differentiate your answer and see if it does indeed satisfy the
differential equation and boundary conditions.

Exercise 5.3: Hot ring . The equation governing the steady state heat flow on
thin ring of unit circumference is

−y′′ = f, 0 < x < 1, y(0) = y(1), y′(0) = y′(1).

a) This problem has a zero mode. Find the zero mode and the consequent
condition on f(x) for a solution to exist.

b) Verify that a suitable modified Green function for the problem is

g(x, ξ) =
1

2
(x− ξ)2 − 1

2
|x− ξ|.

You will need to verify that g(x, ξ) satisfies both the differential equation
and the boundary conditions.
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Exercise 5.4: By using the observation that the left hand side is 2π times the
eigenfunction expansion of a modified Green function G(x, 0) for L = −∂2

x on
a circle of unit radius, show that

∞∑

n=−∞

einx

n2
=

1

2
(x− π)2 − π2

6
, x ∈ [0, 2π).

The term with n = 0 is to be omitted from the sum.

Exercise 5.5: Seek a solution to the equation

−d
2y

dx2
= f(x), x ∈ [0, 1]

with inhomogeneous boundary conditions y ′(0) = F0, y
′(1) = F1. Observe

that the corresponding homogeneous boundary condition problem has a zero
mode. Therefore the solution, if one exists, cannot be unique.

a) Show that there can be no solution to the differential equation and in-
homogeneous boundary condition unless f(x) satisfies the condition

∫ 1

0
f(x) dx = F0 − F1. (?)

b) Let G(x, ξ) denote the modified Green function (5.57)

G(x, ξ) =

{
1
3 − ξ + x2+ξ2

2 , 0 < x < ξ
1
3 − x+ x2+ξ2

2 , ξ < x < 1,
.

Use the Lagrange-identity method for inhomogeneous boundary condi-
tions to deduce that if a solution exists then it necessarily obeys

y(x) =

∫ 1

0
y(ξ) dξ +

∫ 1

0
G(ξ, x)f(ξ) dξ +G(1, x)F1 −G(0, x)F0.

c) By differentiating with respect to x, show that

ytentative(x) =

∫ 1

0
G(ξ, x)f(ξ) dξ +G(1, x)F1 −G(0, x)F0 + C,

where C is an arbitrary constant, obeys the boundary conditions.
d) By differentiating a second time with respect to x, show that ytentative(x)

is a solution of the differential equation if, and only if, the condition ? is
satisfied.
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Exercise 5.6: Lattice Green Functions . The k × k matrices

T1 =




2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 2




, T2 =




2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 1




represent two discrete lattice approximations to −∂2
x on a finite interval.

a) What are the boundary conditions defining the domains of the corre-
sponding continuum differential operators? [They are either Dirichlet
(y = 0) or Neumann (y′ = 0) boundary conditions.] Make sure you
explain your reasoning.

b) Verify that

[T−1
1 ]ij = min(i, j) − ij

k + 1
,

[T−1
2 ]ij = min(i, j).

c) Find the continuum Green functions for the boundary value problems
approximated by the matrix operators. Compare each of the matrix
inverses with its corresponding continuum Green function. Are they
similar?

Exercise 5.7: Eigenfunction expansion The resolvent (Green function) Rλ(x, ξ) =
(L− λ)−1

xξ can be expanded as

(L− λ)−1
xξ =

∑

λn

ϕn(x)ϕn(ξ)

λn − λ
,

where ϕn(x) is the normalized eigenfunction corresponding to the eigenvalue
λn. The resolvent therefore has a pole whenever λ approaches λn. Consider
the case

Rω2(x, ξ) =

(
− d2

dx2
− ω2

)−1

xξ

,

with boundary conditions y(0) = y(L) = 0.

a) Show that

Rω2(x, ξ) =
1

ω sinωL
sinωx sinω(L− ξ), x < ξ,

=
1

ω sinωL
sinω(L− x) sinωξ, ξ < x
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b) Confirm that Rω2 becomes singular at exactly those values of ω2 corre-

sponding to eigenvalues ω2
n of − d2

dx2 .
c) Find the associated eigenfunctions ϕn(x) and, by taking the limit of

Rω2 as ω2 → ω2
n, confirm that the residue of the pole (the coefficient of

1/(ω2
n − ω2)) is precisely the product of the normalized eigenfunctions

ϕn(x)ϕn(ξ).

Exercise 5.8: In this exercise we will investigate the self adjointness of the
operator T = −i∂/∂x on the interval [a, b] by using the resolvent operator
Rλ = (T − λI)−1.

a) The integral kernel Rλ(x, ξ) is a Green function obeying
(
−i ∂
∂x
− λ

)
Rλ(x, ξ) = δ(x− ξ).

Use standard methods to show that

Rλ(x, ξ) =
1

2

(
Kλ + i sgn (x− ξ)

)
eiλ(x−ξ),

where Kλ is a number that depends on the boundary conditions imposed
at the endpoints a, b, of the interval.

b) If T is to be self-adjoint then the Green function must be Hermitian, i.e.
Rλ(x.ξ) = [Rλ(ξ, x)]

∗. Find the condition on Kλ for this to be true, and
show that it implies that

Rλ(b, ξ)

Rλ(a, ξ)
= eiθλ ,

where θλ is some real angle. Deduce that the range of Rλ is the set of
functions

Dλ = {y(x) : y(b) = eiθλy(a)}.
Now the range of Rλ is the domain of (T − λI), which should be same
as the domain of T and therefore not depend on λ. We therefore require
that θλ not depend on λ. Deduce that T will be self-adjoint only for
boundary conditions y(b) = eiθy(a) — i.e. for twisted periodic boundary
conditions.

c) Show that with the twisted periodic boundary conditions of part b), we
have

Kλ = − cot

(
λ(b− a)− θ

2

)
.

From this, show that Rλ(x, ξ) has simple poles at λ = λn, where λn are
the eigenvalues of T .
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d) Compute the residue of the pole of Rλ(x, ξ) at the eigenvalue λn, and
confirm that it is a product of the corresponding normalized eigenfunc-
tions.

Problem 5.9: Consider the one-dimensional Dirac Hamiltonian

Ĥ =

(
−i∂x m1 − im2

m1 + im2 +i∂x

)
,

= −iσ̂3∂x +m1(x)σ̂1 +m2(x)σ̂2.

Here m1(x), m2(x) are real functions, and the σ̂i are the Pauli matrices. H
acts on a two-component “spinor”

Ψ(x) =

(
ψ1(x)
ψ2(x)

)
.

Impose self-adjoint boundary conditions

ψ1(a)

ψ2(a)
= exp{iθa},

ψ1(b)

ψ2(b)
= exp{iθb}

at the ends of the interval [a, b]. Let ΨL(x) be a solution of ĤΨ = λΨ obey-
ing the boundary condition at x = a, and ΨR(x) be a solution obeying the
boundary condition at x = b. Define the “Wronskian” of these solutions to be

W (ΨL,ΨR) = Ψ†
Lσ̂3ΨR.

a) Show that, for real λ and the given boundary conditions, the Wronskian
W (ΨL,ΨR) is independent of position. Show also that W (ΨL,ΨL) =
W (ΨR,ΨR) = 0.

b) Show that the matrix-valued Green function Ĝ(x, ξ) obeying

(Ĥ − λI)Ĝ(x, ξ) = Iδ(x− ξ),

and the given boundary conditions has entries

Gαβ(x, ξ) =





− i

W ∗ψL,α(x)ψ
∗
R,β(ξ), x < ξ,

+
i

W
ψR,α(x)ψ

∗
L,β(ξ), x > ξ.

Observe that Gαβ(x, ξ) = G∗
βα(ξ, x), as befits the inverse of a self-adjoint

operator.
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c) The Green function is discontinuous at x = ξ, but we can define a
“position-diagonal” part by the taking the average

Gαβ(x)
def
=

1

2

(
i

W
ψR,α(x)ψ∗

L,β(x)−
i

W ∗ψL,α(x)ψ
∗
R,β(x)

)
.

Show that if we define the matrix ĝ(x) by setting ĝ(x) = Ĝ(x)σ̂3, then
tr ĝ(x) = 0 and ĝ2(x) = −1

4I. Show further that

i∂xĝ = [ĝ, K̂], (?)

where K̂(x) = σ̂3 (λI −m1(x)σ̂1 −m2(x)σ̂2).

The equation (?) obtained in part (c) is the analogue of the Gelfand-Dikii
equation for the Dirac Hamiltonian. It has applications in the theory of su-
perconductivity, where (?) is known as the Eilenberger equation.


