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CHAPTER 3 

DETERMINANTS AND 

MATRICES 

3.1 DETERMINANTS 

We begin the study of matrices by solving linear equations that will lead us to determi­
nants and matrices. The concept of determinant and the notation were introduced by the 
renowned German mathematician and philosopher Gottfried Wilhelm von Leibniz. 

Homogeneous Linear Equations 

One of the major applications of determinants is in the establishment of a condition for 
the existence of a nontrivial solution for a set of linear homogeneous algebraic equations. 
Suppose we have three unknowns x1, x2, x3 (or n equations with n unknowns): 

a1x1 + a2x2 + a3x3 = 0, 

b1x1 + b2x2 + b3x3 = 0, 

CJXJ + c2x2 + C3X3 = 0. 

(3.1) 

The problem is to determine under what conditions there is any solution, apart from 
the trivial one x1 = 0, x2 = 0, x3 = 0. If we use vector notation x = (x1, x2, x3) for the 
solution and three rows a= (a1, a2, a3), b = (b1, b2, b3), c =(CJ, c2, q) of coefficients, 
then the three equations, Eqs. (3.1), become 

a-x=0, b-x=0, C·X=0. (3.2) 

These three vector equations have the geometrical interpretation that x is orthogonal to 
a, b, and c. If the volume spanned by a, b, c given by the determinant (or triple scalar 
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166 Chapter 3 Determinants and Matrices 

product, see Eq. (1.50) of Section 1.5) 

a1 
D3 = (a x b) • c = det(a, b, c) = b1 

is not zero, then there is only the trivial solution x = 0. 

(3.3) 

Conversely, if the aforementioned determinant of coefficients vanishes, then one of the 
row vectors is a linear combination of the other two. Let us assume that c lies in the plane 
spanned by a and b, that is, that the third equation is a linear combination of the first 
two and not independent. Then x is orthogonal to that plane so that x ~ a x b. Since 
homogeneous equations can be multiplied by arbitrary numbers, only ratios of the Xi are 
relevant, for which we then obtain ratios of 2 x 2 determinants 

x, a2b3 - a3b2 

x3 a1b2 - a2b1 

x2 a1b3 - a3b1 
(3.4) 

= 
x3 a1b2 - a2b1 

from the components of the cross product a x b, provided x3 ~ a1b2 - a2b1 -/= 0. This is 
Cramer's rule for three homogeneous linear equations. 

Inhomogeneous Linear Equations 

The simplest case of two equations with two unknowns, 

(3.5) 

can be reduced to the previous case by imbedding it in three-dimensional space with a so­
lution vector x = (x1, x2, -1) and row vectors a= (a,, a2, a3), b = (b1, b2, b3). As before, 
Eqs. (3.5) in vector notation, a• x = 0 and b • x = 0, imply that x ~ax b, so the analog of 
Eqs. (3.4) holds. For this to apply, though, the third component of a x b must not be zero, 
that is, a1b2 - a2b1 -/= 0, because the third component of xis -1-/= 0. This yields the Xi 

as 

I a3 a21 
a3b2 - b3a2 b3 b2 

XJ = 
a1b2 -a2b1 

a2 I· la, 
b1 b2 

(3.6a) 

I a1 a3 I 
a1b3 - a3b1 b1 b3 

x2 = 
a1b2 - a2b1 -ia, a2 I· 

b1 b2 

(3.6b) 

The determinant in the numerator of x, (x2) is obtained from the determinant of the co­
efficients I~~~; I by replacing the first (second) column vector by the vector (~!) of the 
inhomogeneous side of Eq. (3.5). This is Cramer's rule for a set of two inhomogeneous 
linear equations with two unknowns. 
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These solutions of linear equations in terms of determinants can be generalized to n 
dimensions. The determinant is a square array 

(3.7) 

of numbers (or functions), the coefficients of n linear equations in our case here. The 
number n of columns (and of rows) in the array is sometimes called the order of the 
determinant. The generalization of the expansion in Eq. (1.48) of the triple scalar product 
(of row vectors of three linear equations) leads to the following value of the determinant 
Dn in n dimensions, 

Dn = L 8ijk•••aibjCk • · ·, 

i,j,k, ... 

(3.8) 

where eijk••·• analogous to the Levi-Civita symbol of Section 2.9, is + 1 for even permuta­
tions1 (ijk •••)of (123 • • • n), -1 for odd permutations, and zero if any index is repeated. 

Specifically, for the third-order determinant D3 of Eq. (3.3), Eq. (3.8) leads to 

D3 = +a1b2c3 - a1b3c2 -a2b1c3 +a2b3c1 + a3b1c2 -a3b2c1. (3.9) 

The third-order determinant, then, is this particular linear combination of products. Each 
product contains one and only one element from each row and from each column. Each 
product is added if the columns (indices) represent an even permutation of (123) and sub­
tracted if we have an odd permutation. Equation (3.3) may be considered shorthand no­
tation for Eq. (3.9). The number of terms in the sum (Eq. (3.8)) is 24 for a fourth-order 
determinant, n! for an nth-order determinant. Because of the appearance of the negative 
signs in Eq. (3.9) (and possibly in the individual elements as well), there may be consider­
able cancellation. It is quite possible that a determinant of large elements will have a very 
small value. 

Several useful properties of the nth-order determinants follow from Eq. (3.8). Again, to 
be specific, Eq. (3.9) for third-order determinants is used to illustrate these properties. 

Laplacian Development by Minors 

Equation (3.9) may be written 

D3 = a1 (bzc3 - b3c2) - a2(b1c3 - b3c1) + a3(b1c2 - b2c1) 

b2 I· 
c2 

(3.10) 

In general, the nth-order determinant may be expanded as a linear combination of the 
products of the elements of any row (or any column) and the (n - l)th-order determinants 

1 In a linear sequence abed • • • , any single, simple transposition of adjacent elements yields an odd permutation of the original 
sequence: abed ➔ bacd. Two such transpositions yield an even permutation. In general, an odd number of such interchanges of 
adjacent elements results in an odd permutation; an even number of such transpositions yields an even permutation. 
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formed by striking out the row and column of the original determinant in which the element 
appears. This reduced array (2 x 2 in this specific example) is called a minor. If the element 
is in the i th row and the j th column, the sign associated with the product is ( - 1 i + i . The 
minor with this sign is called the cofactor. If M;J is used to designate the minor formed by 
omitting the ith row and the jth column and C;J is the corresponding cofactor, Eq. (3.10) 
becomes 

3 3 

D3 = L(-l)i+1a1M1J = LaJCIJ· (3.11) 

J=I J=I 

In this case, expanding along the first row, we have i = 1 and the summation over j, the 
columns. 

This Laplace expansion may be used to advantage in the evaluation of high-order de­
terminants in which a lot of the elements are zero. For example, to find the value of the 
determinant 

0 1 0 0 

D= 
-1 0 0 0 
0 0 0 1 ' 

(3.12) 

0 0 -1 0 

we expand across the top row to obtain 

-1 0 0 
D = (-1) 1+2 . (1) 0 0 1 (3.13) 

0 -1 0 

Again, expanding across the top row, we get 

D = (-1) · (-1)'+'. (-1) I ~1 ~I= l~1 ~1=1. (3.14) 

(This determinant D (Eq. (3.12)) is formed from one of the Dirac matrices appearing in 
Dirac's relativistic electron theory in Section 3.4.) 

Antisymmetry 

The determinant changes sign if any two rows are interchanged or if any two columns are 
interchanged. This follows from the even-odd character of the Levi-Civita e in Eq. (3.8) 
or explicitly from the form ofEqs. (3.9) and (3.10).2 

This property was used in Section 2.9 to develop a totally antisymmetric linear combina­
tion. It is also frequently used in quantum mechanics in the construction of a many-particle 
wave function that, in accordance with the Pauli exclusion principle, will be antisymmetric 
under the interchange of any two identical spin ! particles (electrons, protons, neutrons, 
etc.). 

2The sign reversal is reasonably obvious for the interchange of two adjacent rows (or columns), this clearly being an odd 
permutation. Show that the interchange of any two rows is still an odd permutation. 
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• As a special case of antisymmetry, any determinant with two rows equal or two 
columns equal equals zero. 

• If each element in a row or each element in a column is zero, the determinant is equal 
to zero. 

• If each element in a row or each element in a column is multiplied by a constant, the 
determinant is multiplied by that constant. 

• The value of a determinant is unchanged if a multiple of one row is added (column by 
column) to another row or if a multiple of one column is added (row by row) to another 
column.3 

We have 

a1 ai a3 
b1 bi b3 
Ci ci C3 

a, +kai ai a3 
b1 + kbi bi b3 
c, + kci ci c3 

Using the Laplace development on the right-hand side, we obtain 

a, +kai ai a3 
b1 + kbi bi b3 
c, + kci ci c3 

a, ai a3 ai ai a3 
b1 bi b3 + k bi bi b3 

(3.15) 

(3.16) 

then by the property of antisymmetry the second determinant on the right-hand side of 
Eq. (3.16) vanishes, verifying Eq. (3.15). 

As a special case, a determinant is equal to zero if any two rows are proportional or any 
two columns are proportional. 

Some useful relations involving determinants or matrices appear in Exercises of Sec­
tions 3.2 and 3.4. 

Returning to the homogeneous Eqs. (3.1) and multiplying the determinant of the coef­
ficients by x,, then adding xi times the second column and x3 times the third column, we 
can directly establish the condition for the presence of a nontrivial solution for Eqs. (3.1): 

a, ai a3 a1x1 ai a3 a1x1 + aixi + a3x3 ai a3 
x, b1 bi b3 b1x1 bi b3 b1x1 + bixi + b3x3 bi b3 

Ci ci C3 c,x, ci C3 cix1 + cixi + qx3 ci C3 

0 ai a3 
0 bi b3 =0. (3.17) 
0 ci C3 

Therefore x, (and xi and x3) must be zero unless the determinant of the coefficients 
vanishes. Conversely (see text below Eq. (3.3)), we can show that if the determinant of the 
coefficients vanishes, a nontrivial solution does indeed exist. This is used in Section 9.6 to 
establish the linear dependence or independence of a set of functions. 

3This derives from the geometric meaning of the determinant as the volume of the parallelepiped spanned by its column vectors. 
Pulling it to the side without changing it~ height leaves the volume unchanged. 
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If our linear equations are inhomogeneous, that is, as in Eqs. (3.5) if the zeros on 
the right-hand side of Eqs. (3.1) are replaced by a4, b4, and c4, respectively, then from 
Eq. (3.17) we obtain, instead, 

a4 a2 a3 
b4 b2 b3 

x, = 
C4 c2 C3 

(3.18) 
a, a2 a3 
b1 b2 b3 
CJ c2 C3 

which generalizes Eq. (3.6a) ton= 3 dimensions, etc. If the determinant of the coefficients 
vanishes, the inhomogeneous set of equations has no solution - unless the numerators also 
vanish. In this case solutions may exist but they are not unique (see Exercise 3.1.3 for 
a specific example). 

For numerical work, this determinant solution, Eq. (3.18), is exceedingly unwieldy. The 
determinant may involve large numbers with alternate signs, and in the subtraction of two 
large numbers the relative error may soar to a point that makes the result worthless. Also, 
although the determinant method is illustrated here with three equations and three un­
knowns, we might easily have 200 equations with 200 unknowns, which, involving up to 
200! terms in each determinant, pose a challenge even to high-speed computers. There 
must be a better way. 

In fact, there are better ways. One of the best is a straightforward process often called 
Gauss elimination. To illustrate this technique, consider the following set of equations. 

Example 3.1.1 GAUSS ELIMINATION 

Solve 

3x +2y+z = 11 

2x +3y+z = 13 

x+y+4z = 12. 

(3.19) 

The determinant of the inhomogeneous linear equations (3.19) is 18, so a solution exists. 
For convenience and for the optimum numerical accuracy, the equations are rearranged 

so that the largest coefficients run along the main diagonal (upper left to lower right). This 
has already been done in the preceding set. 

The Gauss technique is to use the first equation to eliminate the first unknown, x, from 
the remaining equations. Then the (new) second equation is used to eliminate y from the 
last equation. In general, we work down through the set of equations, and then, with one 
unknown determined, we work back up to solve for each of the other unknowns in succes­
sion. 

Dividing each row by its initial coefficient, we see that Eqs. (3.19) become 

x+jy+½z=\!­

x + !Y + ½z = 1f 
X + y +4z = 12. 

(3.20) 
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Now, using the first equation, we eliminate x from the second and third equations: 

and 

x+jy+½z=-'f 

1y + lz - !l 6 6 - 6 

ly + llz - ~ 3 3 - 3 

X + jy+ ½z = 1} 

y+ ½z = 'I 
y + llz = 25. 

(3.21) 

(3.22) 

Repeating the technique, we use the new second equation to eliminate y from the third 
equation: 

or 

x+h+½z=-'f 

y+ ½z = ¥ 
54z = 108, 

z =2. 

Finally, working back up, we get 

or 

Then with z and y determined, 

and 

Y+ l x2-!l 
5 - 5' 

y=3. 

2 3 I 2 11 x+ 3 X + 3 X = 3, 

X = 1. 

(3.23) 

The technique may not seem so elegant as Eq. (3.18), but it is well adapted to computers 
and is far faster than the time spent with determinants. 

This Gauss technique may be used to convert a determinant into triangular form: 

a, 
D= 0 

0 

for a third-order determinant whose elements are not to be confused with those in Eq. (3.3). 
In this form D = a1b2c3. For an nth-order determinant the evaluation of the triangular 
form requires only n - 1 multiplications, compared with the n ! required for the general 
case. 
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A variation of this progressive elimination is known as Gauss-Jordan elimination. We 
start as with the preceding Gauss elimination, but each new equation considered is used to 
eliminate a variable from all the other equations, not just those below it. If we had used 
this Gauss-Jordan elimination, Eq. (3.23) would become 

I 7 x+ 5Z = 5 

y+ ¼z = ¥ (3.24) 

z =2, 

using the second equation of Eqs. (3.22) to eliminate y from both the first and third equa­
tions. Then the third equation ofEqs. (3.24) is used to eliminate z from the first and second, 
giving 

X = 1 

y =3 

z =2. 

We return to this Gauss-Jordan technique in Section 3.2 for inverting matrices. 

(3.25) 

Another technique suitable for computer use is the Gauss-Seidel iteration technique. 
Each technique has its advantages and disadvantages. The Gauss and Gauss-Jordan meth­
ods may have accuracy problems for large determinants. This is also a problem for ma­
trix inversion (Section 3.2). The Gauss-Seidel method, as an iterative method, may have 
convergence problems. The IBM Scientific Subroutine Package (SSP) uses Gauss and 
Gauss-Jordan techniques. The Gauss-Seidel iterative method and the Gauss and Gauss­
Jordan elimination methods are discussed in considerable detail by Ralston and Wilf and 
also by Pennington.4 Computer codes in FORTRAN and other programming languages 
and extensive literature for the Gauss-Jordan elimination and others are also given by 
Press et al. 5 ■ 

Linear Dependence of Vectors 

Two nonzero two-dimensional vectors 

a1 = :;fO, (a11) 
a12 

are defined to be linearly dependent if two numbers x1, x2 can be found that are not both 
zero so that the linear relation x1a1 + x2a2 = 0 holds. They are linearly independent if 
x1 = 0 = x2 is the only solution of this linear relation. Writing it in Cartesian components, 
we obtain two homogeneous linear equations 

4 A. Ralston and H. Wilf, eds., Mathematical Methods for Digital Computers. New York: Wiley (1960); R. H. Pennington, 
Introductory Computer Methods and Numerical Analysis. New York: Macmillan (1970). 
5w. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed. Cambridge, UK: Cambridge 
University Press (1992), Chapter 2. 
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from which we extract the following criterion for linear independence of two vectors using 
Cramer's mle. If a,, a2 span a nonzero area, that is, their determinant l~g ~~11 -I= 0, 
then the set of homogeneous linear equations has only the solution x1 = 0 = x2. If 
the determinant is zero, then there is a nontrivial solution x,, x2, and our vectors are 
linearly dependent. In paiticular, the unit vectors in the x- and y-directions are linearly 
independent, the linear relation x1.x1 + x2.x2 = G~) = @ having only the trivial solution 
x, =0=xz. 

Three or more vectors in two-dimensional space are always linearly dependent. Thus, 
the maximum number of linearly independent vectors in two-dimensional space is 2. For 
example, given a1, a2, a3, the linear relation x, a, + x2a2 + x3a3 = 0 always has nontrivial 
solutions. If one of the vectors is zero, linear dependence is obvious because the coefficient 
of the zero vector may be chosen to be nonzero and that of the others as zero. So we assume 
all of them as nonzero. If a1 and a2 are linearly independent, we write the linear relation 

as a set of two inhomogeneous linear equations and apply Cramer's mle. Since the determi­
nant is nonzero, we can find a nontrivial solution x,, x2 for any nonzero x3. This argument 
goes through for any pair of linearly independent vectors. If all pairs are linearly depen­
dent, any of these linear relations is a linear relation among the three vectors, and we are 
finished. If there are more than three vectors, we pick any three of them and apply the fore­
going reasoning and put the coefficients of the other vectors, x j = 0, in the linear relation. 

• Mutually orthogonal vectors are linearly independent. 

Assume a linear relation Li Ci Vi = 0. Dotting v j into this using v j • Vi = 0 for j -I= i, we 
obtain CjVj • Vj = 0, so every Cj = 0 because v7 -I= 0. 

It is straightforward to extend these theorems to n or more vectors in n-dimensional 
Euclidean space. Thus, the maximum number of linearly independent vectors in 
n-dimensional space is n. The coordinate unit vectors are linearly independent be­
cause they span a nonzero parallelepiped in n-dimensional space and their determinant 
is unity. 

Gram-Schmidt Procedure 

In an n-dimensional vector space with an inner ( or scalar) product, we can always constmct 
an orthonormal basis of n vectors Wi with Wi • W j = 8ij starting from n linearly independent 
vectors Vi, i = 0, 1, ... , n - 1. 

We start by normalizing vo to unity, defining wo = ~. Then we project vo from v,, 
Fo 

forming u, = v, + awwo, with the admixture coefficient aw chosen so that vo • u, = 0. 
Dotting vo into u, yields aw = - v{v2oo•vi = -v, • wo. Again, we normalize u, defining w1 = 

v2 
0 

#i01 • Here, uf -I= 0 because vo, v, are linearly independent. This first step generalizes to 
u2 

I 

Uj = Vj +ajoWo +aj1W1 + · · · +ajj-lWj-1, 

with coefficients aji = -Vj • Wi. Normalizing Wj = t.z completes our constmction. 
yll] 
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It will be noticed that although this Gram-Schmidt procedure is one possible way of 
constructing an orthogonal or orthonormal set, the vectors w; are not unique. There is an 
infinite number of possible orthonormal sets. 

As an illustration of the freedom involved, consider two (nonparallel) vectors A and B 
in the xy-plane. We may normalize A to unit magnitude and then form B' = aA + B so 
that B' is perpendicular to A. By normalizing B' we have completed the Gram-Schmidt 
orthogonalization for two vectors. But any two perpendicular unit vectors, such as x and y, 
could have been chosen as our orthonormal set. Again, with an infinite number of possible 
rotations of x and y about the z-axis, we have an infinite number of possible orthonormal 
sets. 

Example 3.1.2 VECTORS BY GRAM-SCHMIDT ORTHOGONALIZATION 

To illustrate the method, we consider two vectors 

which are neither orthogonal nor normalized. Normalizing the first vector wo = vo/ ✓2, 
we then construct UJ = VJ + aJoWo so as to be orthogonal to Vo. This yields 

a10 2 ~ 
DJ· vo =0 =VJ· vo + ✓2v0 = -1 +a10v2, 

so the adjustable admixture coefficient a 10 = 1 / ✓2. As a result, 

so the second orthonormal vector becomes 

We check that wo • w, = 0. The two vectors wo, WJ form an orthonormal set of vectors, 
a basis of two-dimensional Euclidean space. ■ 

Exercises 

3.1.1 Evaluate the following determinants: 

1 0 1 1 2 0 
0 v'3 0 0 

1 v'3 0 2 0 
(a) 0 1 0 (b) 3 1 2 (c) -

v'3 1 0 0 0 3 1 ✓2 0 2 0 
0 0 v'3 0 

3.1.2 Test the set of linear homogeneous equations 

X +3y+3z =0, X -y+z =0, 2x + y+3z =0 

to see if it possesses a nontrivial solution, and find one. 
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3.1.3 Given the pair of equations 

x+2y=3, 2x+4y=6, 

(a) Show that the determinant of the coefficients vanishes. 
(b) Show that the numerator determinants (Eq. (3.18)) also vanish. 
( c) Find at least two solutions. 

3.1.4 Express the components of A x B as 2 x 2 determinants. Then show that the dot product 
A • (A x B) yields a Laplacian expansion of a 3 x 3 determinant. Finally, note that two 
rows of the 3 x 3 determinant are identical and hence that A• (A x B) = 0. 

3.1.5 If CiJ is the cofactor of element% (formed by striking out the ith row and jth column 
and including a sign ( -1 i + j), show that 

(a) Li aijCij = Li lljiCji = IAI, where IAI is the determinant with the elements llij, 
(b) Li llijCik = Li lljiCki = 0, j =/. k. 

3.1.6 A determinant with all elements of order unity may be surprisingly small. The Hilbert 
determinant Hij = (i + j - 1)-1, i, j = 1, 2, ... , n is notorious for its small values. 

(a) Calculate the value of the Hilbert determinants of order n for n = 1, 2, and 3. 
(b) If an appropriate subroutine is available, find the Hilbert determinants of order n 

for n = 4, 5, and 6. 

ANS. n Det(Hn) 
-1- 1. 

2 8.33333 X 10-2 

3 4.62963 X 10-4 

4 1.65344 X 10-? 

5 3.74930 X 10-12 

6 5.36730 X 10-lS 

3.1. 7 Solve the following set of linear simultaneous equations. Give the results to five decimal 
places. 

l .0x1 + 0.9x2 + 0.8x3 + 0.4x4 + 0. lx5 = 1.0 

0.9x1 + l.0x2 + 0.8x3 + 0.5x4 + 0.2xs + 0.lx6 = 0.9 

0.8x1 + 0.8x2 + l.0x3 + 0.7x4 + 0.4xs + 0.2x6 = 0.8 

0.4x1 +0.5x2 +0.7x3 + l.0x4 + 0.6xs +0.3x6 = 0.7 

0.lx1 + 0.2x2 + 0.4x3 + 0.6x4 + 1.0xs + 0.5x6 = 0.6 

0. lx2 + 0.2x3 + 0.3x4 + 0.5xs + l .0x6 = 0.5. 

Note. These equations may also be solved by matrix inversion, Section 3.2. 
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3.1.8 Solve the linear equations a• x = c, a x x + b = 0 for x = (x1, x2, x3) with constant 
vectors a =I- 0, band constant c. 

ANS. x =-½a+ (ax b)/a2. 
a 

3.1.9 Solve the linear equations a- x = d, b- x = e, c • x = /, for x = (x1, x2, x3) with constant 
vectors a, b, c and constants d, e, f such that (ax b) • c =I- 0. 

3.1.10 

ANS. [(ax b) • c]x = d(b x c) + e(c x a)+ /(ax b). 

Express in vector form the solution (x1, x2, x3) of ax,+ bx2 +cx3 +d = 0 with constant 
vectors a, b, c, d so that (ax b) • c =I- 0. 

3.2 MATRICES 

Matrix analysis belongs to linear algebra because matrices are linear operators or maps 
such as rotations. Suppose, for instance, we rotate the Cartesian coordinates of a two­
dimensional space, as in Section 1.2, so that, in vector notation, 

( xj) = ( x1 c?scp + x2 sincp) = (Lj a1jXj). 
x2 -x2 smcp + x2 coscp Lj a2jXj 

(3.26) 

We label the array of elements (~~: ~g) a 2 x 2 matrix A consisting of two rows and two 
columns and consider the vectors x, x' as 2 x 1 matrices. We take the summation of 
products in Eq. (3.26) as a definition of matrix multiplication involving the scalar 
product of each row vector of A with the column vector x. Thus, in matrix notation 
Eq. (3.26) becomes 

x'=Ax. (3.27) 

To extend this definition of multiplication of a matrix times a column vector to the prod­
uct of two 2 x 2 matrices, let the coordinate rotation be followed by a second rotation given 
by matrix B such that 

x"=Bx'. (3.28) 

In component form, 

x;' = :~::)ijxJ = L)ij I>jkXk = L(Lbijajk)Xk. 
j j k k j 

(3.29) 

The summation over j is matrix multiplication defining a matrix C = BA such that 

" ~ X; = L..,,CikXk, (3.30) 
k 

or x" = Cx in matrix notation. Again, this definition involves the scalar products of row 
vectors of B with column vectors of A. This definition of matrix multiplication generalizes 
to m x n matrices and is found useful; indeed, this usefulness is the justification for its 
existence. The geometrical interpretation is that the matrix product of the two matrices BA 
is the rotation that carries the unprimed system directly into the double-primed coordinate 
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system. Before passing to formal definitions, the your should note that operator A is de­
scribed by its effect on the coordinates or basis vectors. The matrix elements aij constitute 
a representation of the operator, a representation that depends on the choice of a basis. 

The special case where a matrix has one column and n rows is called a column vector, 
Ix}, with components Xi, i = 1, 2, ... , n. If A is an n x n matrix, Ix} an n-component 
column vector, Alx} is defined as in Eqs. (3.27) and (3.26). Similarly, if a matrix has one 
row and n columns, it is called a row vector, (xi with components Xi, i = 1,2, ... ,n. 
Clearly, (x I results from Ix} by interchanging rows and columns, a matrix operation called 
transposition, and transposition for any matrix A, A is called6 "A transpose" with matrix 
elements (A);k =Aki. Transposing a product of matrices AB reverses the order and gives 
BA; similarly Alx} transpose is (xlA. The scalar product takes the form (xly} = Li Xi Yi 
(x; in a complex vector space). This Dirac bra-ket notation is used in quantum mechanics 
extensively and in Chapter 10 and here subsequently. 

More abstractly, we can define the dual space V of linear functionals F on a vector 
space V, where each linear functional F of V assigns a number F(v) so that 

F(CJVJ + c2v2) = ciF(vi) + c2F(v2) 

for any vectors VJ, v2 from our vector space V and numbers CJ, c2. If we define the sum 
of two functionals by linearity as 

(F1 + F2)(v) = F1 (v) + F2(v), 

then V is a linear space by construction. 
Riesz' theorem says that there is a one-to-one correspondence between linear function­

als F in V and vectors fin a vector space V that has an inner (or scalar) product (flv} 
defined for any pair of vectors f, v. 

The proof relies on the scalar product by defining a linear functional F for any vector f 
of V as F (v) = (flv} for any v of V. The linearity of the scalar product inf shows that these 
functionals form a vector space (contained in V necessarily). Note that a linear functional 
is completely specified when it is defined for every vector v of a given vector space. 

On the other hand, starting from any nontrivial linear functional F of V we now con­
struct a unique vector f of V so that F(v) = f • v is given by an inner product. We start 
from an orthonormal basis Wi of vectors in V using the Gram-Schmidt procedure (see 
Section 3.2). Take any vector v from V and expand it as v = L; Wi • vw;. Then the 
linear functional F(v) = Li w; • vF(wi) is well defined on V. If we define the spe­
cific vector f = Li F (wi )w;, then its inner product with an arbitrary vector v is given 
by (flv} = f · v = Li F(wi)W; • v = F(v), which proves Riesz' theorem. 

Basic Definitions 

A matrix is defined as a square or rectangular array of numbers or functions that obeys 
certain laws. This is a perfectly logical extension of familiar mathematical concepts. In 
arithmetic we deal with single numbers. In the theory of complex variables (Chapter 6) we 
deal with ordered pairs of numbers, ( 1, 2) = I + 2i, in which the ordering is important. We 

6Some texts (including ours sometimes) denote A transpose by AT. 
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now consider numbers ( or functions) ordered in a square or rectangular array. For conve­
nience in later work the numbers are distinguished by two subscripts, the first indicating 
the row (horizontal) and the second indicating the column (vertical) in which the number 
appears. For instance, a13 is the matrix element in the first row, third column. Hence, if A 
is a matrix with m rows and n columns, 

A=(:~: :~~ 
am1 am2 

a1n) a2n 

amn 
(3.31) 

Perhaps the most important fact to note is that the elements aij are not combined with 
one another. A matrix is not a determinant. It is an ordered array of numbers, not a single 
number. 

The matrix A, so far just an array of numbers, has the properties we assign to it. Literally, 
this means constructing a new form of mathematics. We define that matrices A, B, and C, 
with elements a;j, bij, and Cij, respectively, combine according to the following rules. 

Rank 

Looking back at the homogeneous linear Eqs. (3. I), we note that the matrix of coefficients, 
A, is made up of three row vectors that each represent one linear equation of the set. If 
their triple scalar product is not zero, than they span a nonzero volume and are linearly 
independent, and the homogeneous linear equations have only the trivial solution. In this 
case the matrix is said to have rank 3. In n dimensions the volume represented by the 
triple scalar product becomes the determinant, det(A), for a square matrix. If det(A) # 0, 
then x n matrix A has rank n. The case of Eqs. (3.1), where the vector c lies in the plane 
spanned by a and b, corresponds to rank 2 of the matrix of coefficients, because only two 
of its row vectors (a, b corresponding to two equations) are independent. In general, the 
rank r of a matrix is the maximal number of linearly independent row or column 
vectors it has, with O :'.Sr :'.Sn. 

Equality 

Matrix A = Matrix B if and only if aij = bij for all values of i and j. This, of course, 
requires that A and Beach be m x n arrays (m rows, n columns). 

Addition, Subtraction 

A ± B = C if and only if a;j ± bij = Cij for all values of i and j, the elements combining 
according to the laws of ordinary algebra (or arithmetic if they are simple numbers). This 
means that A+ B = B + A, commutation. Also, an associative law is satisfied (A+ B) + 
C =A+ (B + C). If all elements are zero, the matrix, called the null matrix, is denoted 
by 0. For all A, 
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with 

(

0 0 0 · 
0 0 0 · 

0 = 0 0 0 · 
. . . . J 

Such m x n matrices form a linear space with respect to addition and subtraction. 

Multiplication (by a Scalar) 

The multiplication of matrix A by the scalar quantity a is defined as 

aA= (aA), 

(3.32) 

(3.33) 

in which the elements of aA are aa;j; that is, each element of matrix A is multiplied by the 
scalar factor. This is in striking contrast to the behavior of determinants in which the factor 
a multiplies only one column or one row and not every element of the entire determinant. 
A consequence of this scalar multiplication is that 

aA=Aa, commutation. 

If A is a square matrix, then 

det(aA) = an det(A). 

Matrix Multiplication, Inner Product 

if and only if7 Cij = L a;kbkj. 

k 

(3.34) 

The ij element of C is formed as a scalar product of the ith row of A with the jth column 
of B (which demands that A have the same number of columns (n) as B has rows). The 
dummy index k takes on all values 1, 2, ... , n in succession; that is, 

(3.35) 

for n = 3. Obviously, the dummy index k may be replaced by any other symbol that is 
not already in use without altering Eq. (3.34). Perhaps the situation may be clarified by 
stating that Eq. (3.34) defines the method of combining certain matrices. This method of 
combination, to give it a label, is called matrix multiplication. To illustrate, consider two 
(so-called Pauli) matrices 

and (3.36) 

7Some authors follow the summation convention here (compare Section 2.6). 
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The 11 element of the product, ( a1 a3) 11 is given by the sum of the products of elements of 
the first row of a1 with the corresponding elements of the first column of a3: 

( ~ ~ ) ( : ~I)-0 · I +I-0 = 0 

Continuing, we have 

( O•l+l•O 0-0+1·(-l))_(O -1) 
O'j u3 = 1 · 1 + 0 · 0 1 · 0 + 0 · ( -1) - 1 0 . 

Here 

(a1 a3)ij = <7J; 1 a3,j + <7Ji2<732r 

Direct application of the definition of matrix multiplication shows that 

0'30'1 = (_~\ ~) 

and by Eq. (3.37) 

0'30'1 = -0'10'3 • 

Except in special cases, matrix multiplication is not commutative:8 

ABi-BA. 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

However, from the definition of matrix multiplication we can show9 that an associative law 
holds, (AB)C = A(BC). There is also a distributive law, A(B + C) =AB+ AC. 

The unit matrix 1 has elements Oij, Kronecker delta, and the property that IA= Al = A 
for all A, 

(

1 0 0 0 · 
0 1 0 0 · 

1= 0 0 1 0 · 
0 0 0 1 · 
. . . . . l (3.41) 

It should be noted that it is possible for the product of two matrices to be the null matrix 
without either one being the null matrix. For example, if 

A=(~~) and B=(~l ~). 

AB = 0. This differs from the multiplication of real or complex numbers, which form 
a field, whereas the additive and multiplicative structure of matrices is called a ring by 
mathematicians. See also Exercise 3.2.6(a), from which it is evident that, if AB= 0, at 

8Commutation or the lack of it is conveniently described by the commutator bracket symbol, [A, BJ =AB-BA. Equation (3.40) 
becomes [A, BJ =fa 0. 
9Note that the basic definitions of equality, addition, and multiplication are given in terms of the matrix elements, the Oij. All our 
matrix operations can be carried out in terms of the matrix elements. However, we can also treat a matrix as a single algebraic 
operator, as in Eq. (3.40). Matrix elements and single operators each have their advantages, as will be seen in the following 
section. We shall use both approaches. 
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least one of the matrices must have a zero determinant (that is, be singular as defined after 
Eq. (3.50) in this section). 

If A is an n x n matrix with determinant IAI -j. 0, then it has a unique inverse A- 1 

satisfying AA- 1 = A- 1 A = 1. If B is also an n x n matrix with inverse B-1, then the 
product AB has the inverse 

(3.42) 

because ABB- 1 A- 1 = 1 = B-1 A- 1 AB (see also Exercises 3.2.31 and 3.2.32). 
The product theorem, which says that the determinant of the product, IABI, of two n x n 

matrices A and Bis equal to the product of the determinants, IAI I Bl, links matrices with de­
terminants. To prove this, consider the n column vectors Ck = (I: j aij b j k, i = 1, 2, ... , n) 
of the product matrix C = AB fork= 1, 2, ... , n. Each Ck= LA bAkaA is a sum of n 
column vectors ajk = (a;A, i = 1, 2, ... , n). Note that we are now using a different prod­
uct summation index jk for each column Ck. Since any determinant D(b1a1 + b2a2) = 
b1 D(a1) + b2D(a2) is linear in its column vectors, we can pull out the summation sign in 
front of the determinant from each column vector in C together with the common column 
factor b jkk so that 

ICI = L)h 1bjz2 · .. bjnn det(aji ajz, ... , ajn). 

j~s 

(3.43) 

Ifwe rearrange the column vectors ajk of the determinant factor in Eq. (3.43) in the proper 
order, then we can pull the common factor det(a1, a2, ... , an) = IAI in front of then sum­
mation signs in Eq. (3.43). These column permutations generate just the right sign£ ji h-••jn 

to produce in Eq. (3.43) the expression in Eq. (3.8) for IBI so 

(3.44) 

which proves the product theorem. 

Direct Product 

A second procedure for multiplying matrices, known as the direct tensor or Kronecker 
product, follows. If A is an m x m matrix and B is an n x n matrix, then the direct product 
IS 

(3.45) 

C is an mn x mn matrix with elements 

(3.46) 

with 

a =m(i-1) +k, f3 = n(j - 1) + /. 
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For instance, if A and B are both 2 x 2 matrices, 

A@B = (a11B a12B) 
a21B a22B 

a11b12 a12bu 

a11b22 a12bi1 

a21b12 a22b11 
a21b22 a22b21 

(3.47) 

The direct product is associative but not commutative. As an example of the direct prod­
uct, the Dirac matrices of Section 3.4 may be developed as direct products of the Pauli 
matrices and the unit matrix. Other examples appear in the construction of groups (see 
Chapter 4) and in vector or Hilbert space in quantum theory. 

Example 3.2.1 DIRECT PRODUCT OF VECTORS 

The direct product of two two-dimensional vectors is a four-component vector, 

(
XOYO) 

( xo) ©(Yo)= xoy1 ; 
Xt Yt XtYO 

while the direct product of three such vectors, 

is a (23 = 8)-dimensional vector. 

Diagonal Matrices 

XtYl 

xoyozo 
xoyoz1 
XOYIZO 
XOYIZI 
XtYOZO 
XJYOZI 
XtYIZO 
XtYIZI 

■ 

An important special type of matrix is the square matrix in which all the nondiagonal 
elements are zero. Specifically, if a 3 x 3 matrix A is diagonal, then 

A= (ab1 
a~2 ~ ) . 

0 0 a33 

A physical interpretation of such diagonal matrices and the method of reducing matrices to 
this diagonal form are considered in Section 3.5. Here we simply note a significant property 
of diagonal matrices - multiplication of diagonal matrices is commutative, 

AB=BA, if A and B are each diagonal. 
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Multiplication by a diagonal matrix [d1, d2, ... , dn] that has only nonzero elements in the 
diagonal is particularly simple: 

while the opposite order gives 

(! ;)(~ ~)=(! ;:;)=(! :). 
Thus, a diagonal matrix does not commute with another matrix unless both are diag­
onal, or the diagonal matrix is proportional to the unit matrix. This is borne out by the 
more general form 

co 0) C a1, a1.) 0 d2 0 a21 a22 a2n 
[d1, d2, ... , dn]A = ... 

0 0 dn ant an2 ann 

c1a11 d1a12 d1a1.) = d2a2 t d2a22 d2a2n 
' 

dnanl dnan2 dnann 

whereas 

( au a12 a1.) C 0 n a21 a22 a2n O d2 
A[d1,d2, ... ,dn] = ... . ... 

ant an2 ann O 0 

c1a11 d2a12 d.a1.) 
_ d1a21 d2a22 dna2n 

d1an1 d2an2 dnann 

Here we have denoted by [d1, ... , dn] a diagonal matrix with diagonal elements d1, ... , dn. 

In the special case of multiplying two diagonal matrices, we simply multiply the corre­
sponding diagonal matrix elements, which obviously is commutative. 

Trace 

In any square matrix the sum of the diagonal elements is called the trace. 
Clearly the trace is a linear operation: 

trace(A- 8) = trace(A) - trace(B). 
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One of its interesting and useful properties is that the trace of a product of two matrices A 
and B is independent of the order of multiplication: 

trace(AB) = L(AB)ii = LLaiibji 
j 

j j 

= trace(BA). 

(3.48) 

This holds even though AB =I- BA. Equation (3.48) means that the trace of any commutator 
[A, B] = AB - BA is zero. From Eq. (3.48) we obtain 

trace(ABC) = trace(BCA) = trace(CAB), 

which shows that the trace is invariant under cyclic permutation of the matrices in a prod­
uct. 

For a real symmetric or a complex Hermitian matrix (see Section 3.4) the trace is the 
sum, and the determinant the product, of its eigenvalues, and both are coefficients of the 
characteristic polynomial. In Exercise 3.4.23 the operation of taking the trace selects one 
term out of a sum of 16 terms. The trace will serve a similar function relative to matrices 
as orthogonality serves for vectors and functions. 

In terms of tensors (Section 2.7) the trace is a contraction and, like the contracted second­
rank tensor, is a scalar (invariant). 

Matrices are used extensively to represent the elements of groups (compare Exer­
cise 3.2.7 and Chapter 4). The trace of the matrix representing the group element is known 
in group theory as the character. The reason for the special name and special attention 
is that, the trace or character remains invariant under similarity transformations ( compare 
Exercise 3.3.9). 

Matrix Inversion 

At the beginning of this section matrix A is introduced as the representation of an operator 
that (linearly) transforms the coordinate axes. A rotation would be one example of such 
a linear transformation. Now we look for the inverse transformation A-1 that will restore 
the original coordinate axes. This means, as either a matrix or an operator equation, 10 

W.th (A-1) - <-tl 1 ij =aij , 

AA-1 = A-1A = 1. (3.49) 

c-tl _ Cj; 
aij =IA!, (3.50) 

10Here and throughout this chapter our matrices have finite rank. If A is an infinite-rank matrix (n x n with n ➔ oo ), then life is 
more difficult. For A - I to be the inverse we must demand that both 

one relation no longer implies the other. 
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with Cji the cofactor (see discussion preceding Eq. (3.11)) of aij and the assumption that 
the determinant of A, IAI -1- 0. If it is zero, we label A singular. No inverse exists. 

There is a wide variety of alternative techniques. One of the best and most commonly 
used is the Gauss-Jordan matrix inversion technique. The theory is based on the results of 
Exercises 3.2.34 and 3.2.35, which show that there exist matrices ML such that the product 
MLA will be A but with 

a. one row multiplied by a constant, or 

b. one row replaced by the original row minus a multiple of another row, or 

c. rows interchanged. 

Other matrices MR operating on the right (AMR) can carry out the same operations on 
the columns of A. 

This means that the matrix rows and columns may be altered (by matrix multiplication) 
as though we were dealing with determinants, so we can apply the Gauss-Jordan elimina­
tion techniques of Section 3.1 to the matrix elements. Hence there exists a matrix ML (or 
MR) such that11 

(3.51) 

Then ML= A- 1. We determine ML by carrying out the identical elimination operations on 
the unit matrix. Then 

(3.52) 

To clarify this, we consider a specific example. 

Example 3.2.2 GAUSS-JORDAN MATRIX INVERSION 

We want to invert the matrix 

(3 2 1) 
A= 2 3 1 . 

1 1 4 
(3.53) 

For convenience we write A and 1 side by side and carry out the identical operations on 
each: 

0 2 

D G 
0 0) 

3 and 1 0 . 
1 0 1 

(3.54) 

To be systematic, we multiply each row to get ak1 = 1, 

(: 
2 

n G 
0 

D 
3 
3 and I 
2 2 
1 0 

(3.55) 

11 Remember that det(A) ,6 0. 
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Subtracting the first row from the second and third rows, we obtain 

G t n Md et I n (3.56) 

Then we divide the second row ( of both matrices) by % and subtract i times it from the 

first row and } times it from the third row. The results for both matrices are 

G ! D Md U: }: ~). (3.57) 

We divide the third row (of both matrices) by \8 • Then as the last step ½ times the third 
row is subtracted from each of the first two rows (of both matrices). Our final pair is 

(
11 7 I) (1 0 0) Ts -Ts -Ts 

~ ~ ~ and A- 1 = = ::: ~:18 -l8 • (3.58) 

The check is to multiply the original A by the calculated A-1 to see if we really do get 
the unit matrix 1. ■ 

As with the Gauss-Jordan solution of simultaneous linear algebraic equations, this tech­
nique is well adapted to computers. Indeed, this Gauss-Jordan matrix inversion technique 
will probably be available in the program library as a subroutine (see Sections 2.3 and 2.4 
of Press et al., loc. cit.). 

For matrices of special form, the inverse matrix can be given in closed form. For 
example, for 

A=(::~). 
c b e 

the inverse matrix has a similar but slightly more general form, 

with matrix elements given by 

th y) 
8 th , 
/h E 

(3.59) 

(3.60) 

Da = ed -b2, Dy= -(cd -b2), D/31 = (c - e)b, D/32 = (c - a)b, 

D8 = ae - c2, DE =ad-b2, D = b2 (2c -a - e) + d(ae - c2), 

where D = det(A) is the determinant of the matrix A. If e = a in A, then the inverse matrix 
A- 1 also simplifies to 

/31 = /32, E=<X, D = (a 2 - c2)d + 2(c -a)b2. 
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As a check, let us work out the I I -matrix element of the product AA - I = 1. We find 

1 
aa + b/31 + cy = -[a(ed - b2) + b2(c - e) - c(cd - b2)] 

D 

= _.!:_ ( - ab2 + aed + 2b2c - b2e - c2d) = D = I. 
D D 

Similarly we check that the 12-matrix element vanishes, 

1 
a/31 + b8 + c/32 = -[ab(c - e) + b(ae - c2) + cb(c -a)]= 0, 

D 

and so on. 
Note though that we cannot always find an inverse of A-1 by solving for the matrix 

elements a, b, ... of A, because not every inverse matrix A- 1 of the form in Eq. (3.60) has 
a corresponding A of the special form in Eq. (3.59), as Example 3.2.2 clearly shows. 

Matrices are square or rectangular arrays of numbers that define linear transformations, 
such as rotations of a coordinate system. As such, they are linear operators. Square matri­
ces may be inverted when their determinant is nonzero. When a matrix defines a system of 
linear equations, the inverse matrix solves it. Matrices with the same number of rows and 
columns may be added and subtracted. They form what mathematicians call a ring with 
a unit and a zero matrix. Matrices are also useful for representing group operations and 
operators in Hilbert spaces. 

Exercises 

3.2.1 Show that matrix multiplication is associative, (AB)C = A(BC). 

3.2.2 Show that 

(A+ B)(A - B) = A2 - B2 

if and only if A and B commute, 

[A,B]=0. 

3.2.3 Show that matrix A is a linear operator by showing that 

A(c1r1 + c2r2) = ciAr1 + c2Ar2. 

It can be shown that an n x n matrix is the most general linear operator in an n­
dimensional vector space. This means that every linear operator in this n-dimensional 
vector space is equivalent to a matrix. 

3.2.4 (a) Complex numbers, a+ ib, with a and b real, may be represented by (or are iso-
morphic with) 2 x 2 matrices: 

a+ ib ~ ( ~b : ) · 

Show that this matrix representation is valid for (i) addition and (ii) multiplication. 
(b) Find the matrix corresponding to (a+ ib)-1. 
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3.2.5 If A is an n x n matrix, show that 

det(-A) = (-It detA. 

3.2.6 (a) The matrix equation A2 = 0 does not imply A = 0. Show that the most general 
2 x 2 matrix whose square is zero may be written as 

( ab b2 ) 
-a2 -ab ' 

where a and b are real or complex numbers. 
(b) If C =A+ B, in general 

detC i- detA + detB. 

Construct a specific numerical example to illustrate this inequality. 

3.2. 7 Given the three matrices 

( -1 
A= 0 C= (~1 -1) 

0 ' 

find all possible products of A, B, and C, two at a time, including squares. Express your 
answers in terms of A, B, and C, and 1, the unit matrix. These three matrices, together 
with the unit matrix, form a representation of a mathematical group, the vierergruppe 
(see Chapter 4). 

3.2.8 Given 

show that 

Kn= KKK••• (n factors)= 1 

(with the proper choice of n, n # 0). 

3.2.9 Verify the Jacobi identity, 

3.2.10 

[A, [B, Cl]= [B, [A, Cl] - [C, [A, BJ]. 

This is useful in matrix descriptions of elementary particles (see Eq. (4.16)). As a 
mnemonic aid, the you might note that the Jacobi identity has the same form as the 
BAC-CAB rule of Section 1.5. 

Show that the matrices 

A=(~ 
1 n. B=G 

0 

!). C=O 
0 i) 0 0 0 

0 0 0 

satisfy the commutation relations 

[A, B] = C, [A, C] =0, and [B, C] =0. 
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Let 

. cl 1 0 

!} (0 0 0 ~I) 0 0 . 0 0 -1 
1-

0 0 J= ~ 1 0 0 ' - 0 
0 0 -1 0 0 0 

and 

k-(~ 0 -1 ;) 0 0 
- 1 0 0 

0 -1 0 

Show that 

(a) i2 = j2 = k2 = -1, where 1 is the unit matrix. 
(b) ij = -ji = k, 

jk=-kj =i, 
ki =-ik=j. 

These three matrices (i, j, and k) plus the unit matrix 1 form a basis for quaternions. 
An alternate basis is provided by the four 2 x 2 matrices, i<11, i<12, -i<13, and 1, where 
the a are the Pauli spin matrices of Exercise 3.2.13. 

3.2.12 A matrix with elements aij = 0 for j < i may be called upper right triangular. The 
elements in the lower left (below and to the left of the main diagonal) vanish. Examples 
are the matrices in Chapters 12 and 13, Exercise 13.1.21, relating power series and 
eigenfunction expansions. 
Show that the product of two upper right triangular matrices is an upper right triangular 
matrix. 

3.2.13 The three Pauli spin matrices are 

<11 = ( ~ ~) , <12 = ( ~ ~i ) , and 

Show that 

(a) (ai)2 = lz, 
(b) <Tj<Tk = i<11, (j, k, l) = (1, 2, 3), (2, 3, 1), (3, 1, 2) (cyclic permutation), 
(c) <Ti<Tj + <Tj<Ti = 28ij lz; 1z is the 2 x 2 unit matrix. 

These matrices were used by Pauli in the nonrelativistic theory of electron spin. 

3.2.14 Using the Pauli <Ti of Exercise 3.2.13, show that 

(u • a)(u • b) =a• b 1z + iu • (a x b). 

Here 

u = i:a1 + ya2 + za3, 
a and bare ordinary vectors, and 12 is the 2 x 2 unit matrix. 



190 Chapter 3 Determinants and Matrices 

3.2.15 One description of spin 1 particles uses the matrices 

and 

Show that 

(a) [Mx, My] = iMz, and so on12 (cyclic permutation of indices). Using the Levi­
Civita symbol of Section 2.9, we may write 

[Mp, Mq] = iepqrMr. 

(b) M2 = M; + M~ + M~ = 2 I], where 13 is the 3 x 3 unit matrix. 

(c) [M2 , Md= 0, 
[Mz, L +] = L +, 
[L +, L -1 = 2Mz, 
where 
L+ = Mx +iMy, 
L- =Mx -iMy. 

3.2.16 Repeat Exercise 3.2.15 using an alternate representation, 

3.2.17 

Mx = (~ ~ ~i), 
0 i 0 

and 

(0 -i 0) 
Mz = i O O . 

0 0 0 

In Chapter 4 these matrices appear as the generators of the rotation group. 

Show that the matrix-vector equation 

reproduces Maxwell's equations in vacuum. Here 1/t is a column vector with compo­
nents 1ft j = B j - i E j / c, j = x, y, z. M is a vector whose elements are the angular 
momentum matrices of Exercise 3.2.16. Note that t:oµo = 1/c2 , 13 is the 3 x 3 unit 
matrix. 

12[A, BJ= AB - BA. 
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From Exercise 3.2.15(b), 

A comparison with the Dirac relativistic electron equation suggests that the "particle" 
of electromagnetic radiation, the photon, has zero rest mass and a spin of 1 (in units 
of h). 

Repeat Exercise 3.2.15, using the matrices for a spin of 3/2, 

M =!( 1 
v13 0 0) 

M =~( 1 
-v13 0 

-~)· 0 2 0 0 -2 
X 2 0 2 0 v13 ' y 2 0 2 0 

0 0 v13 0 0 0 v13 
and 

(3 0 0 ~) M = ! 0 1 0 
z 2 0 0 -1 

0 0 0 -3 

3.2.19 An operator P commutes with Jx and Jy, the x and y components of an angular momen­
tum operator. Show that P commutes with the third component of angular momentum, 
that is, that 

Hint. The angular momentum components must satisfy the commutation relation of 
Exercise 3.2.15(a). 

3.2.20 The L + and L - matrices of Exercise 3.2.15 are ladder operators (see Chapter 4): L + 
operating on a system of spin projection m will raise the spin projection to m + 1 if m is 
below its maximum. L + operating on mmax yields zero. L - reduces the spin projection 
in unit steps in a similar fashion. Dividing by ,./2, we have 

Show that 

where 

(0 I 0) 
L+ = 0 0 1 , 

0 0 0 
(

0 0 0) L-= 1 0 0 . 
0 1 0 

L + 1-1) = 10), L -1-1) = null column vector, 

L +10) = 11), L -10) = 1-1), 

L +11) = null column vector, L-11) = 10), 

1-1)= m 10) = (!). and 

represent states of spin projection -1, 0, and 1, respectively. 
Note. Differential operator analogs of these ladder operators appear in Exercise 12.6.7. 
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3.2.21 Vectors A and Bare related by the tensor T, 

B=TA. 

Given A and B, show that there is no unique solution for the components of T. This is 
why vector division B / A is undefined ( apart from the special case of A and B parallel 
and T then a scalar). 

3.2.22 We might ask for a vector A - l , an inverse of a given vector A in the sense that 

3.2.23 

3.2.24 

3.2.25 

3.2.26 

3.2.27 

A-A-1 =A- 1 •A= 1. 

Show that this relation does not suffice to define A - l uniquely; A would then have an 
infinite number of inverses. 

If A is a diagonal matrix, with all diagonal elements different, and A and B commute, 
show that B is diagonal. 

If A and B are diagonal, show that A and B commute. 

Show that trace(ABC) = trace(CBA) if any two of the three matrices commute. 

Angular momentum matrices satisfy a commutation relation 

j, k, l cyclic. 

Show that the trace of each angular momentum matrix vanishes. 

(a) The operator trace replaces a matrix A by its trace; that is, 

trace(A) = L aii. 
i 

Show that trace is a linear operator. 
(b) The operator det replaces a matrix A by its determinant; that is, 

det(A) = determinant of A. 

Show that det is not a linear operator. 

3.2.28 A and B anticommute: BA= -AB. Also, A2 = 1, B2 = 1. Show that trace(A) = 
trace(B) = 0. 
Note. The Pauli and Dirac (Section 3.4) matrices are specific examples. 

3.2.29 With Ix) an N-dimensional column vector and (yl an N-dimensional row vector, show 
that 

3.2.30 

trace(lx)(yl) = (ylx). 

Note. Ix) (y I means direct product of column vector Ix) with row vector (y I, The result 
is a square N x N matrix. 

(a) If two nonsingular matrices anticommute, show that the trace of each one is zero. 
(Nonsingular means that the determinant of the matrix nonzero.) 

(b) For the conditions of part ( a) to hold, A and B must be n x n matrices with n even. 
Show that if n is odd, a contradiction results. 



3.2.31 If a matrix has an inverse, show that the inverse is unique. 

3.2.32 If A- 1 has elements 

(A-1) - <-O - Cji 
ij -aij - IAI, 

where Cji is the jith cofactor of IAI, show that 

A- 1A=l. 

Hence A- 1 is the inverse of A (if IAI "I- 0). 

3.2.33 Show that detA-1 = (detA)-1. 

Hint. Apply the product theorem of Section 3.2. 
Note. If detA is zero, then A has no inverse. A is singular. 
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3.2.34 Find the matrices ML such that the product MLA will be A but with: 

(a) the ith row multiplied by a constant k (aij ➔ kaij, j = 1, 2, 3, ... ); 
(b) the ith row replaced by the original ith row minus a multiple of the mth row 

(aij ➔ llij - Kamj, i = 1, 2, 3, ... ); 
(c) the ith and mth rows interchanged (aij ➔ llmj, llmj ➔ llij, j = 1, 2, 3, ... ). 

3.2.35 Find the matrices MR such that the product AMR will be A but with: 

(a) the ith column multiplied by a constant k (aji ➔ kaji, j = 1, 2, 3, ... ); 
(b) the ith column replaced by the original ith column minus a multiple of the mth 

column (aji ➔ llji - kajm, j = 1, 2, 3, ... ); 
(c) the ith and mth columns interchanged (aji ➔ lljm, lljm ➔ llji, j = 1, 2, 3, ... ). 

3.2.36 Find the inverse of 

(3 2 1) 
A= 2 2 1 . 

1 1 4 

3.2.37 (a) Rewrite Eq. (2.4) of Chapter 2 (and the corresponding equations for dy and dz) as 
a single matrix equation 

ldxk} = Jidqj}-

J is a matrix of derivatives, the Jacobian matrix. Show that 

(dxkldxk} = (dqdGldqj}, 

with the metric (matrix) G having elements gij given by Eq. (2.6). 
(b) Show that 

det(J) dq1 dq2 dq3 = dx dy dz, 

with det(J) the usual Jacobian. 
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3.2.38 Matrices are far too useful to remain the exclusive property of physicists. They may ap­
pear wherever there are linear relations. For instance, in a study of population movement 
the initial fraction of a fixed population in each of n areas ( or industries or religions, etc.) 
is represented by an n-component column vector P. The movement of people from one 
area to another in a given time is described by an n x n (stochastic) matrix T. Here T;j 
is the fraction of the population in the jth area that moves to the ith area. (Those not 
moving are covered by i = j .) With P describing the initial population distribution, the 
final population distribution is given by the matrix equation TP = Q. 

3.2.39 

3.2.40 

3.2.41 

3.2.42 

3.2.43 

From its definition, I:7=1 Pi = 1. 

(a) Show that conservation of people requires that 

(b) Prove that 

n 

L1ti=l, j=l,2, ... ,n. 
i=l 

n 

LQi=l 
i=l 

continues the conservation of people. 

Given a 6 x 6 matrix A with elements aij =0.Sli-il, i =0,1,2, ... ,5; i =0,1, 
2, ... , 5, find A- 1 . List its matrix elements to five decimal places. 

4 -2 0 0 0 0 
-2 5 -2 0 0 0 

ANS. A-1 =! 0 -2 5 -2 0 0 
3 0 0 -2 5 -2 0 

0 0 0 -2 5 -2 
0 0 0 0 -2 4 

Exercise 3.1.7 may be written in matrix form: 

AX=C. 

Find A- 1 and calculate X as A-1 C. 

( a) Write a subroutine that will multiply complex matrices. Assume that the complex 
matrices are in a general rectangular form. 

(b) Test your subroutine by multiplying pairs of the Dirac 4 x 4 matrices, Section 3.4. 

(a) Write a subroutine that will call the complex matrix multiplication subroutine of 
Exercise 3.2.41 and will calculate the commutator bracket of two complex matri­
ces. 

(b) Test your complex commutator bracket subroutine with the matrices of Exer-
cise 3.2.16. 

Interpolating polynomial is the name given to the (n - 1 )-degree polynomial determined 
by (and passing through) n points, (xi, Yi) with all the Xi distinct. This interpolating 
polynomial forms a basis for numerical quadratures. 



3.2.44 
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(a) Show that the requirement that an (n - 1)-degree polynomial in x pass through 
each of the n points (xi, Yi) with all Xi distinct leads to n simultaneous equations 
of the form 

n-1 

Z:,ajx( =Yi, 
j=O 

i=l,2, ... ,n. 

(b) Write a computer program that will read inn data points and return then coeffi­
cients a j. Use a subroutine to solve the simultaneous equations if such a subroutine 
is available. 

(c) Rewrite the set of simultaneous equations as a matrix equation 

XA=Y. 

( d) Repeat the computer calculation of part (b ), but this time solve for vector A by 
inverting matrix X (again, using a subroutine). 

A calculation of the values of electrostatic potential inside a cylinder leads to 

V (0.0) = 52.640 V (0.6) = 25.844 

V(0.2) = 48.292 V(0.8) = 12.648 

V(0.4) = 38.270 V(l.0) = 0.0. 

The problem is to determine the values of the argument for which V = 10, 20, 30, 40, 
and 50. Express V (x) as a series L~=O a2nx2n. (Symmetry requirements in the original 
problem require that V(x) be an even function of x.) Determine the coefficients azn, 
With V(x) now a known function of x, find the root of V(x) - 10 = 0, 0 s x s 1. 
Repeat for V (x) - 20, and so on. 

ANS. ao = 52.640, 
a2 = -117.676, 
V(0.6851) = 20. 

3.3 ORTHOGONAL MATRICES 

Ordinary three-dimensional space may be described with the Cartesian coordinates 
(x1, xi, x3). We consider a second set of Cartesian coordinates (x~, x;, x~), whose ori­
gin and handedness coincides with that of the first set but whose orientation is different 
(Fig. 3.1). We can say that the primed coordinate axes have been rotated relative to the 
initial, unprimed coordinate axes. Since this rotation is a linear operation, we expect a 
matrix equation relating the primed basis to the unprimed basis. 

This section repeats portions of Chapters 1 and 2 in a slightly different context and 
with a different emphasis. Previously, attention was focused on the vector or tensor. In 
the case of the tensor, transformation properties were strongly stressed and were critical. 
Here emphasis is placed on the description of the coordinate rotation itself - the matrix. 
Transformation properties, the behavior of the matrix when the basis is changed, appear 
at the end of this section. Sections 3.4 and 3.5 continue with transformation properties in 
complex vector spaces. 
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FIGURE 3.1 Cartesian coordinate systems. 

Direction Cosines 

A unit vector along the xi-axis (x;) may be resolved into components along the x1 -, x2-, 
and x3-axes by the usual projection technique: 

xi = x1 cos(xi, x1) + x2 cos(xi, x2) + x3 cos(xi, x3). (3.61) 

Equation (3.61) is a specific example of the linear relations discussed at the beginning of 
Section 3.2. 

For convenience these cosines, which are the direction cosines, are labeled 

Continuing, we have 

cos(xi, x1) = xi · x1 =an, 

cos(xi, x2) = xi · x2 = a12;-

cos(x;, x1) = x; • x1 = a21, 

cos(x;, x2) = x; · x2 = a22, 

and so on, where a21 =/. a12 in general. Now, Eq. (3.62) may be rewritten 

xi = XJ a1 I +x2a12 + x3a13, 

and also 

i'2 = x1a21 + x2a22 + x3a23, 

x; = x1a31 + x2a32 + x3a33. 

(3.62a) 

(3.62b) 

(3.62c) 

(3.62d) 



3.3 Orthogonal Matrices 197 

We may also go the other way by resolving x1, xi, and x3 into components in the primed 
system. Then 

XJ = x;all +x;ai1 +x3a31, 

xi = x; a12 + x;aii + x3a3i, 

x3 = x; a13 + x;ai3 + x3a33. 

(3.63) 

Associating x1 and x'1 with the subscript 1, xi and x; with the subscript 2, x3 and~ 
with the subscript 3, we see that in each case the first subscript of a;j refers to the primed 
unit vector (x;, x;, x3), whereas the second subscript refers to the unprimed unit vector 
cx1,xi,x3). 

Applications to Vectors 

If we consider a vector whose components are functions of the position in space, then 

V(x1, xi, x3) = x1 Vt + xi Vi+ x3 V3, 

V' (x;, x;, x3) = x'1 V{ + x; V~ + X3 V3, 
(3.64) 

since the point may be given both by the coordinates (x1, xi, x3) and by the coordinates 
(x;, x;, x3). Note that V and V' are geometrically the same vector (but with different com­
ponents). The coordinate axes are being rotated; the vector stays fixed. Using Eqs. (3.62) 
to eliminate x1, xi, and x3, we may separate Eq. (3.64) into three scalar equations, 

V{ = a11 Vt +a12 Vi +a13 Vi, 

V~ = ai1 Vt+ aii Vi+ ai3 Vi, 

V3 = a31 Vt+ a3i Vi+ a33 V3. 

(3.65) 

In particular, these relations will hold for the coordinates of a point (x1, xi, x3) and 
(x;, x;, x3), giving 

x; =a11x1 +a12xi+a13x3, 

x; = ai1x1 + aiixi + ai3x3, 

x3 = a31x1 + a3ixi + a33X3, 

(3.66) 

and similarly for the primed coordinates. In this notation the set of three equations (3.66) 
may be written as 

3 

x; = :~:::>ijXj, (3.67) 
j=I 

where i takes on the values 1, 2, and 3 and the result is three separate equations. 
Now let us set aside these results and try a different approach to the same problem. We 

consider two coordinate systems (x1, xi, x3) and (x;, x;, x3) with a common origin and 
one point (x1, xi, x3) in the unprimed system, (x;, x;, x3) in the primed system. Note the 
usual ambiguity. The same symbol x denotes both the coordinate axis and a particular 
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distance along that axis. Since our system is linear, x; must be a linear combination of 
the Xi- Let 

3 

x; = :~:::>ijXj. (3.68) 

J=l 

The aiJ may be identified as the direction cosines. This identification is carried out for the 
two-dimensional case later. 

If we have two sets of quantities (Vi, Vi, V3) in the unprimed system and (V{, V~, V£) in 
the primed system, related in the same way as the coordinates of a point in the two different 
systems (Eq. (3.68)), 

3 

v( = I>iJ v1, (3.69) 
j=l 

then, as in Section 1.2, the quantities (Vi, Vi, Vi) are defined as the components of a vector 
that stays fixed while the coordinates rotate; that is, a vector is defined in terms of trans­
formation properties of its components under a rotation of the coordinate axes. In a sense 
the coordinates of a point have been taken as a prototype vector. The power and useful­
ness of this definition became apparent in Chapter 2, in which it was extended to define 
pseudovectors and tensors. 

From Eq. (3.67) we can derive interesting information about the aij that describe the 
orientation of coordinate system (x;, x~, x~) relative to the system (x1, xi, x3). The length 
from the origin to the point is the same in both systems. Squaring, for convenience, 13 

= LXJXk LaiJaik• 
j,k 

This can be true for all points if and only if 

j,k=l,2,3. 

' 

(3.70) 

(3.71) 

Note that Eq. (3.71) is equivalent to the matrix equation (3.83); see also Eqs. (3.87a) 
to (3.87d). 

Verification of Eq. (3.71), if needed, may be obtained by returning to Eq. (3.70) and 
setting r = (x1, xi, x3) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), and so on to evaluate the 
nine relations given by Eq. (3.71). This process is valid, since Eq. (3.70) must hold for all r 
for a given set of aiJ• Equation (3.71), a consequence of requiring that the length remain 
constant (invariant) under rotation of the coordinate system, is called the orthogonality 
condition. The aiJ, written as a matrix A subject to Eq. (3.71), form an orthogonal matrix, 
a first definition of an orthogonal matrix. Note that Eq. (3.71) is not matrix multiplication. 
Rather, it is interpreted later as a scalar product of two columns of A. 

13Note that two independent indices j and k are used. 
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In matrix notation Eq. (3.67) becomes 

lx')=Alx). 

Orthogonality Conditions -Two-Dimensional Case 

(3.72) 

A better understanding of the a;j and the orthogonality condition may be gained by consid­
ering rotation in two dimensions in detail. (This can be thought of as a three-dimensional 
system with the x1-, x2-axes rotated about x3 .) From Fig. 3.2, 

xi= x1 cos<p + x2 sin<p, 

x~ = -x1 sin<p +x2cos<p. 
(3.73) 

Therefore by Eq. (3.72) 

A= ( co~<p sin<p). 
- sm<p COS<p 

(3.74) 

Notice that A reduces to the unit matrix for <p = 0. Zero angle rotation means nothing has 
changed. It is cltW from Fig. 3.2 that 

a11 = cos <p = cos(xi, xi), 

a12 = sin<p = cos(! - <p} = cos(xi, x2), 
(3.75) 

and so on, thus identifying the matrix elements aij as the direction cosines. Equation (3.71), 
the orthogonality condition, becomes 

sin2 <p + cos2 <p = 1, 

sin <p cos <p - sin <p cos <p = 0. 

FIGURE 3.2 Rotation of coordinates. 

(3.76) 
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The extension to three dimensions (rotation of the coordinates through an angle <p coun­
terclockwise about x3) is simply 

( 
cos <p sin <p 0) 

A= - sincp coscp 0 . 
0 0 1 

(3.77) 

The a33 = 1 expresses the fact that x3 = x3, since the rotation has been about the x3-axis. 
The zeros guarantee that xi and x; do not depend on x3 and that x3 does not depend on x1 
and x2. 

Inverse Matrix, A- 1 

Returning to the general transformation matrix A, the inverse matrix A- 1 is defined such 
that 

(3.78) 

That is, A- 1 describes the reverse of the rotation given by A and returns the coordinate 
system to its original position. Symbolically, Eqs. (3.72) and (3.78) combine to give 

Ix)= A- 1Alx), (3.79) 

and since Ix) is arbitrary, 

(3.80) 

the unit matrix. Similarly, 

AA- 1 = 1, (3.81) 

using Eqs. (3.72) and (3.78) and eliminating Ix) instead of Ix'). 

Transpose Matrix, A 

We can determine the elements of our postulated inverse matrix A- 1 by employing the 
orthogonality condition. Equation (3.71), the orthogonality condition, does not conform to 
our definition of matrix multiplication, but it can be put in the required form by defining a 
new matrix A such that 

I Oji =aij, I (3.82) 

Equation (3.71) becomes 

(3.83) 

This is a restatement of the orthogonality condition and may be taken as the constraint 
defining an orthogonal matrix, a second definition of an orthogonal matrix. Multiplying 
Eq. (3.83) by A- 1 from the right and using Eq. (3.81), we have 

(3.84) 
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a third definition of an orthogonal matrix. This important result, that the inverse equals 
the transpose, holds only for orthogonal matrices and indeed may be taken as a further 
restatement of the orthogonality condition. 

Multiplying Eq. (3.84) by A from the left, we obtain 

(3.85) 

or 

(3.86) 

which is still another form of the orthogonality condition. 
Summarizing, the orthogonality condition may be stated in several equivalent ways: 

AA=AA= 1, 

A=A- 1. 

(3.87a) 

(3.87b) 

(3.87c) 

(3.87d) 

Any one of these relations is a necessary and a sufficient condition for A to be orthogonal. 
It is now possible to see and understand why the term orthogonal is appropriate for 

these matrices. We have the general form 

a matrix of direction cosines in which a;j is the cosine of the angle between x; and x j. 
Therefore all, a12, a13 are the direction cosines of xi relative to x1, x2, x3. These three 
elements of A define a unit length along xi, that is, a unit vector x;, 

x; = XJall + x2a12 + X3a13. 

The orthogonality relation (Eq. (3.86)) is simply a statement that the unit vectors x;, x;, 
and x; are mutually perpendicular, or orthogonal. Our orthogonal transformation matrix A 
transforms one orthogonal coordinate system into a second orthogonal coordinate system 
by rotation and/or reflection. 

As an example of the use of matrices, the unit vectors in spherical polar coordinates may 
be written as 

(3.88) 



202 Chapter 3 Determinants and Matrices 

where C is given in Exercise 2.5.1. This is equivalent to Eqs. (3.62) with x;, x'2, and x; 

replaced by r, 8, and q>. From the preceding analysis C is orthogonal. Therefore the inverse 
relation becomes 

(3.89) 

and Exercise 2.5 .5 is solved by inspection. Similar applications of matrix inverses appear in 
connection with the transformation of a power series into a series of orthogonal functions 
(Gram-Schmidt orthogonalization in Section 10.3) and the numerical solution of integral 
equations. 

Euler Angles 

Our transformation matrix A contains nine direction cosines. Clearly, only three of these 
are independent, Eq. (3.71) providing six constraints. Equivalently, we may say that two 
parameters (0 and cp in spherical polar coordinates) are required to fix the axis ofrotation. 
Then one additional parameter describes the amount of rotation about the specified axis. 
(In the Lagrangian formulation of mechanics (Section 17 .3) it is necessary to describe 
A by using some set of three independent parameters rather than the redundant direction 
cosines.) The usual choice of parameters is the Euler angles. 14 

The goal is to describe the orientation of a final rotated system (xi", xt, xn relative to 
some initial coordinate system (x1, x2, x3). The final system is developed in three steps, 
with each step involving one rotation described by one Euler angle (Fig. 3.3): 

1. The coordinates are rotated about the x3-axis through an angle a counterclockwise 
into new axes denoted by xi-, x~ -, x~. (The x3- and x~ -axes coincide.) 

a b C 

FIGURE 3.3 (a) Rotation about x3 through angle a; (b) rotation about x~ through 
angle f3; ( c) rotation about x{ through angle y. 

14There are almost as many definitions of the Euler angles as there are authors. Here we follow the choice generally made by 
workers in the area of group theory and the quantum theory of angular momentum (compare Sections 4.3, 4.4). 
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2. The coordinates are rotated about the x;-axis15 through an angle fJ counterclockwise 
into new axes denoted by x;-, xf-, x;. (The x;- and xf-axes coincide.) 

3. The third and final rotation is through an angle y counterclockwise about the x;-axis, 
yielding the xt, xf', xt system. (The x;- and x;'-axes coincide.) 

The three matrices describing these rotations are 

exactly like Eq. (3.77), 

and 

sina 
cosa 

0 

(
cos{J O -sin{J) 

Ry(/J)= 0 1 0 
sin fJ O cos fJ 

( 
cosy 

Rz (y) = - s~n y 

siny 
cosy 

0 

The total rotation is described by the triple matrix product, 

A(a, {J, y) = Rz(y)Ry({J)Rz(a). 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

Note the order: Rz(a) operates first, then Ry(/J), and finally Rz(y). Direct multiplication 
gives 

A(a, {J, y) 

( 
cos y cos fJ cos a - sin y sin a 

= -siny cos{Jcosa - cosy sin a 
sin{Jcosa 

cosy cos fJ sin a + sin y cos a 
- sin y cos{J sin a+ cosy cos a 

sin{J sina 

-cosy sin{J) 
sin y sin{J 

cos{J 

(3.94) 

Equating A(aij) with A(a, {J, y), element by element, yields the direction cosines in terms 
of the three Euler angles. We could use this Euler angle identification to verify the direction 
cosine identities, Eq. (1.46) of Section 1.4, but the approach of Exercise 3.3.3 is much more 
elegant. 

Symmetry Properties 

Our matrix description leads to the rotation group S0(3) in three-dimensional space JR3, 

and the Euler angle description of rotations forms a basis for developing the rotation 
group in Chapter 4. Rotations may also be described by the unitary group SU(2) in two­
dimensional space C2 over the complex numbers. The concept of groups such as SU(2) 
and its generalizations and group theoretical techniques are often encountered in modern 

15Some authors choose this second rotation to be about the x1-axis. 
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particle physics, where symmetry properties play an important role. The SU(2) group is 
also considered in Chapter 4. The power and flexibility of matrices pushed quaternions into 
obscurity early in the 20th century. 16 

It will be noted that matrices have been handled in two ways in the foregoing discussion: 
by their components and as single entities. Each technique has its own advantages and both 
are useful. 

The transpose matrix is useful in a discussion of symmetry properties. If 

(3.95) 

the matrix is called symmetric, whereas if 

A=-A, aij = -a1;, (3.96) 

it is called antisymmetric or skewsymmetric. The diagonal elements vanish. It is easy to 
show that any (square) matrix may be written as the sum of a symmetlic matrix and an 
antisymmetric matrix. Consider the identity 

(3.97) 

[ A + A] is clearly symmetric, whereas [ A - A] is clearly antisymmetric. This is the 
matrix analog ofEq. (2.75), Chapter 2, for tensors. Similarly, a function may be broken up 
into its even and odd parts. 

So far we have interpreted the orthogonal matrix as rotating the coordinate system. This 
changes the components of a fixed vector (not rotating with the coordinates) (Fig. 1.6, 
Chapter 1 ). However, an orthogonal matrix A may be interpreted equally well as a rotation 
of the vector in the opposite direction (Fig. 3.4). 

These two possibilities, (1) rotating the vector keeping the coordinates fixed and (2) 
rotating the coordinates (in the opposite sense) keeping the vector fixed, have a direct 
analogy in quantum theory. Rotation (a time transformation) of the state vector gives the 
Schrodinger picture. Rotation of the basis keeping the state vector fixed yields the Heisen­
berg picture. 

y 
~ 

y 

r 

FIGURE 3.4 Fixed coordinates­
rotated vector. 

16R. J. Stephenson, Development of vector analysis from quaternions. Am. J. Phys. 34: 194 (1966). 
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Suppose we interpret matrix A as rotating a vector r into the position shown by r,; that 
is, in a particular coordinate system we have a relation 

(3.98) 

Now let us rotate the coordinates by applying matrix B, which rotates (x, y, z) into 
(x', y', z'), 

r; =Br,= BAr =(Ar)'= BA{B- 1B)r 

= {BAB-1)Br= {BAB- 1)r'. (3.99) 

Br, is just r, in the new coordinate system, with a similar interpretation holding for Br. 
Hence in this new system (Br) is rotated into position (Br1) by the matrix BAB-1: 

= (BAB- 1) Br 

t ! 
A' r' 

In the new system the coordinates have been rotated by matrix B; A has the form A', in 
which 

(3.100) 

A' operates in the x', y', z' space as A operates in the x, y, z space. 
The transformation defined by Eq. (3.100) with B any matrix, not necessarily orthogo­

nal, is known as a similarity transformation. In component form Eq. (3.100) becomes 

Now, if B is orthogonal, 

and we have 

a;j = Lbikak1(B-1)1j. 
k,l 

( -1 -
B )1j = (B)1j = bj1, 

a;j = L bikb j/llk/. 
k,l 

(3.101) 

(3.102) 

(3.103) 

It may be helpful to think of A again as an operator, possibly as rotating coordinate axes, 
relating angular momentum and angular velocity of a rotating solid (Section 3.5). Matrix A 
is the representation in a given coordinate system-or basis. But there are directions asso­
ciated with A- crystal axes, symmetry axes in the rotating solid, and so on - so that the 
representation A depends on the basis. The similarity transformation shows just how the 
representation changes with a change of basis. 
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Relation to Tensors 

Comparing Eq. (3.103) with the equations of Section 2.6, we see that it is the definition 
of a tensor of second rank. Hence a matrix that transforms by an orthogonal similarity 
transformation is, by definition, a tensor. Clearly, then, any orthogonal matrix A, inter­
preted as rotating a vector (Eq. (3.98)), may be called a tensor. If, however, we consider 
the orthogonal matrix as a collection of fixed direction cosines, giving the new orientation 
of a coordinate system, there is no tensor property involved. 

The symmetry and antisymmetry properties defined earlier are preserved under orthog­
onal similarity transformations. Let A be a symmetric matrix, A = A, and 

A'= BAB- 1. (3.104) 

Now, 

A'= s- 1As = BAB- 1, 

since B is orthogonal. But A= A. Therefore 

A'= BAB- 1 =A', 

(3.105) 

(3.106) 

showing that the property of symmetry is invariant under an orthogonal similarity transfor­
mation. In general, symmetry is not preserved under a nonorthogonal similarity transfor­
mation. 

Exercises 

Note. Assume all matrix elements are real. 

3.3.1 Show that the product of two orthogonal matrices is orthogonal. 
Note. This is a key step in showing that all n x n orthogonal matrices form a group 
(Section 4.1 ). 

3.3.2 If A is orthogonal, show that its determinant = ± 1. 

3.3.3 If A is orthogonal and detA = + 1, show that (detA)aij = C;J, where C;J is the cofactor 
of aij. This yields the identities of Eq. ( 1.46), used in Section 1.4 to show that a cross 
product of vectors (in three-space) is itself a vector. 
Hint. Note Exercise 3.2.32. 

3.3.4 Another set of Euler rotations in common use is 

(1) a rotation about the x3-axis through an angle <p, counterclockwise, 

(2) a rotation about the x;-axis through an angle 0, counterclockwise, 

(3) a rotation about the xl-axis through an angle 1/1, counterclockwise. 

If 

a= <p-n/2 
f3 =0 
y = 1/1 + n/2 

show that the final systems are identical. 

<p =a +n/2 
0 = f3 
1/1 = y - n/2, 
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3.3.5 Suppose the Earth is moved (rotated) so that the north pole goes to 30° north, 20° west 
( original latitude and longitude system) and the 10° west meridian points due south. 

(a) What are the Euler angles describing this rotation? 
(b) Find the corresponding direction cosines. 

(
0.9551 

ANS. (b) A = 0.0052 
0.2962 

-0.2552 -0.1504) 
0.5221 -0.8529 . 
0.8138 0.5000 

3.3.6 Verify that the Euler angle rotation matrix, Eq. (3.94), is invariant under the transforma­
tion 

a-+a+n, fJ-+ -fJ, y-+ y-n. 

3.3.7 Show that the Euler angle rotation matrix A(a, fJ, y) satisfies the following relations: 

-1 -(a) A (a, fJ, y) = A(a, fJ, y), 
(b) A- 1(a, fJ, y) = A(-y, -fJ, -a). 

3.3.8 Show that the trace of the product of a symmetric and an antisymmetric matrix is zero. 

3.3.9 Show that the trace of a matrix remains invariant under similarity transformations. 

3.3.10 Show that the determinant of a matrix remains invariant under similarity transforma­
tions. 
Note. Exercises (3.3.9) and (3.3.10) show that the trace and the determinant are inde­
pendent of the Cartesian coordinates. They are characteristics of the matrix ( operator) 
itself. 

3.3.11 Show that the property of antisymmetry is invariant under orthogonal similarity trans­
formations. 

3.3.12 A is 2 x 2 and orthogonal. Find the most general form of 

Compare with two-dimensional rotation. 

3.3.13 Ix} and IY} are column vectors. Under an orthogonal transformation S, Ix'} = Six}, 
ly'} = Sly}. Show that the scalar product (x I y} is invariant under this orthogonal trans­
formation. 
Note. This is equivalent to the invariance of the dot product of two vectors, Section 1.3. 

3.3.14 Show that the sum of the squares of the elements of a matrix remains invariant under 
orthogonal similarity transformations. 

3.3.15 As a generalization of Exercise 3.3.14, show that 

L_ SjkTjk = L, S1mT/m, 
jk l,m 
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3.3.16 

3.3.17 

3.3.18 

where the primed and unprimed elements are related by an orthogonal similarity trans­
formation. This result is useful in deriving invariants in electromagnetic theory (com­
pare Section 4.6). 
Note. This product Mjk = L SjkTjk is sometimes called a Hadamard product. In the 
framework of tensor analysis, Chapter 2, this exercise becomes a double contraction of 
two second-rank tensors and therefore is clearly a scalar (invariant). 

A rotation <p1 + <p2 about the z-axis is carried out as two successive rotations <p1 and 
<p2, each about the z-axis. Use the matrix representation of the rotations to derive the 
trigonometric identities 

cos( <p1 + <p2) = cos <p1 cos <p2 - sin <p1 sin <p2, 

sin(<p1 + <p2) = sin<p1 cos <p2 + cos <p1 sin<p2. 

A column vector V has components Vi and V2 in an initial (unprimed) system. Calculate 
V{ and V~ for a 

( a) rotation of the coordinates through an angle of 0 counterclockwise, 
(b) rotation of the vector through an angle of 0 clockwise. 

The results for parts (a) and (b) should be identical. 

Write a subroutine that will test whether a real N x N matrix is symmetric. Symmetry 
may be defined as 

O::; laij -aj;I :Se, 

where e is some small tolerance (which allows for tnmcation error, and so on in the 
computer). 

3.4 HERMITIAN MATRICES, UNITARY MATRICES 

Definitions 

Thus far it has generally been assumed that our linear vector space is a real space and 
that the matrix elements (the representations of the linear operators) are real. For many 
calculations in classical physics, real matrix elements will suffice. However, in quantum 
mechanics complex variables are unavoidable because of the form of the basic commuta­
tion relations ( or the form of the time-dependent Schrodinger equation). With this in mind, 
we generalize to the case of complex matrix elements. To handle these elements, let us 
define, or label, some new properties. 

1. Complex conjugate, A*, formed by taking the complex conjugate (i ➔ -i) of each 
element, where i = .J=T. 

2. Adjoint, At, formed by transposing A*, 

(3.107) 
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3. Hermitian matrix: The matrix A is labeled Hermitian (or self-adjoint) if 

A=At. (3.108) 

If A is real, then At = A and real Hermitian matrices are real symmetric matrices. 
In quantum mechanics (or matrix mechanics) matrices are usually constructed to be 
Hermitian, or unitary. 

4. Unitary matrix: Matrix U is labeled unitary if 

I ut=u-'. (3.109) 

If U is real, then u-1 = 0, so real unitary matrices are orthogonal matrices. This 
represents a generalization of the concept of orthogonal matrix (compare Eq. (3.84)). 

5. (AB)* =A*B*, (AB)t = stAt. 

If the matrix elements are complex, the physicist is almost always concerned with Her­
mitian and unitary matrices. Unitary matrices are especially important in quantum me­
chanics because they leave the length of a (complex) vector unchanged-analogous to the 
operation of an orthogonal matrix on a real vector. It is for this reason that the S matrix 
of scattering theory is a unitary matrix. One important exception to this interest in unitary 
matrices is the group of Lorentz matrices, Chapter 4. Using Minkowski space, we see that 
these matrices are not unitary. 

In a complex n-dimensional linear space the square of the length of a point i = 
x 7 (x1, x2, ... , xn), or the square of its distance from the origin 0, is defined as x t x = 
I: x7x; = I: Ix; 12 . If a coordinate transformation y = Ux leaves the distance unchanged, 
then x t x = y t y = (Ux) t Ux = x tut Ux. Since x is arbitrary it follows that ut U = ln; 
that is, U is a unitary n x n matrix. If x' = Ax is a linear map, then its matrix in the new 
coordinates becomes the unitary (analog of a similarity) transformation 

A'= UAUt, 

because Ux' = y' = UAx = UAu- 1 y = UAUt y. 

Pauli and Dirac Matrices 

The set of three 2 x 2 Pauli matrices <T, 

(3.110) 

(3.111) 

were introduced by W. Pauli to describe a particle of spin 1 /2 in nonrelativistic quantum 
mechanics. It can readily be shown that (compare Exercises 3.2.13 and 3.2.14) the Pauli u 
satisfy 

a;aJ + a1a; = 28;1 Ii, anticommutation 

a;aJ = iak, i, j, k a cyclic permutation of 1, 2, 3 

(a;)2 = Ii, 

(3.112) 

(3.113) 

(3.114) 
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where Ii is the 2 x 2 unit matrix. Thus, the vector u /2 satisfies the same commutation 
relations, 

(3.115) 

as the orbital angular momentum L (L x L = iL, see Exercise 2.5.15 and the SO(3) and 
SU(2) groups in Chapter 4). 

The three Pauli matrices u and the unit matrix form a complete set, so any Hermitian 
2 x 2 matrix M may be expanded as 

M = molz +m1a1 + m2a2 + m3a3 = mo +m · u, (3.116) 

where them; form a constant vector m. Using ( a; )2 = Ii and trace( a;) = 0 we obtain from 
Eq. (3.116) the expansion coefficients m; by forming traces, 

2mo = trace(M), i = 1,2, 3. (3.117) 

Adding and multiplying such 2 x 2 matrices we generate the Pauli algebra. 17 Note that 
trace(a;) = 0 for i = 1, 2, 3. 

In 1927 P. A. M. Dirac extended this formalism to fast-moving particles of spin ½, 
such as electrons (and neutrinos). To include special relativity he started from Einstein's 
energy, £ 2 = p2c2 + m2c4, instead of the nonrelativistic kinetic and potential energy, 
E = p2 /2m + V. The key to the Dirac equation is to factorize 

£ 2 - p2c2 = £ 2 - (cu• p)2 = (E - cu• p)(E +cu• p) = m2c4 (3.118) 

using the 2 x 2 matrix identity 

(3.119) 

The 2 x 2 unit matrix lz is not written explicitly in Eq. (3.118), and Eq. (3.119) follows 
from Exercise 3.2.14 for a= b = p. Equivalently, we can introduce two matrices y' and y 
to factorize £ 2 - p2c2 directly: 

[ Ey' ® 12 - c(y ® u) · p J2 
= E2y,2 ® 12 + c2y2 ® (u. p)2 - Ec(y'y + yy') ® u. p 

= £2 _ p2c2 = m2c4. 

For Eq. (3.119') to hold, the conditions 

y'2 = 1 = -y2, y'y + yy' =0 

(3.119') 

(3.120) 

must be satisfied. Thus, the matrices y' and y anticommute, just like the three Pauli ma­
trices; therefore they cannot be real or complex numbers. Because the conditions (3.120) 
can be met by 2 x 2 matrices, we have written direct product signs (see Example 3.2. I) in 
Eq. (3.119') because y', y are multiplied by Ii, u matrices, respectively, with 

/ (1 Q) 
y = 0 -1 ' (3.121) 

17For its geometrical significance, see W. E. Baylis, J. Huschilt, and Jiansu Wei, Am. J. Phys. 60: 788 (1992). 
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The direct-product 4 x 4 matrices in Eq. (3.119') are the four conventional Dirac 
y-matrices, 

(' 0 
0 

i ). Yo= y' ® li = (5 0 0 1 0 
-1J = 0 0 -1 

0 0 0 -1 

u')-e 
0 0 

i). 
I ( 0 0 1 

y =y®a1 = 0 - 0 -1 0 -a1 
-1 0 0 

(° 0 I O) 
3 0 a3 0 0 0 -1 

y - y ® a, -( -u, 0 ) - ~I 0 0 0 ' 
(3.122) 

1 0 0 

and similarly for y 2 = y ® a2. In vector notation y = y ® u is a vector with three 
components, each a 4 x 4 matrix, a generalization of the vector of Pauli matrices to a 
vector of 4 x 4 matrices. The four matrices yi are the components of the four-vector 
yJL =(yo, y 1, y2, y 3). If we recognize in Eq. (l.119') 

Ey' ® 12 - c(y ® u) · p = yµ, Pµ, = y · p = (yo, y) · (E, cp) (3.123) 

as a scalar product of two four-vectors yJL and p/1- (see Lorentz group in Chapter 4), then 
Eq. (3.119') with p2 = p • p = E2 - p2c2 may be regarded as a four-vector generalization 
ofEq. (3.119). 

Summarizing the relativistic treatment of a spin 1/2 particle, it leads to 4 x 4 matrices, 
while the spin 1/2 of a nonrelativistic particle is described by the 2 x 2 Pauli matrices CT. 

By analogy with the Pauli algebra, we can form products of the basic yJL matrices 
and linear combinations of them and the unit matrix 1 = 14, thereby generating a 16-
dimensional (so-called ClitTord18) algebra. A basis (with convenient Lorentz transforma­
tion properties, see Chapter 4) is given (in 2 x 2 matrix notation of Eq. (3.122)) by 

·0123 (0 14, Ys = I Y y y y = 1i Ii) 0 ' 

The y-matrices anticommute; that is, their symmetric combinations 

(3.125) 

where g00 = 1 = - g 11 = - g22 = - g33 , and gµ,v = 0 for µ I- v, are zero or proportional 
to the 4 x 4 unit matrix 14, while the six antisymmetric combinations in Eq. (3.124) give 
new basis elements that transform like a tensor under Lorentz transformations (see Chap­
ter 4). Any 4 x 4 matrix can be expanded in terms of these 16 elements, and the expan­
sion coefficients are given by forming traces similar to the 2 x 2 case in Eq. (3.117) us-

18D. Hestenes and G. Sobczyk, lac.cit.; D. Hestenes, Am. J. Phys. 39: 1013 (1971); and J. Math. Phys. 16: 556 (1975). 
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ing trace(14) = 4, trace(ys) = 0, trace(yµ,) = 0 = trace(y5yµ,), trace(aµ,v) = 0 forµ,, v = 
0, 1, 2, 3 (see Exercise 3.4.23). In Chapter 4 we show that y5 is odd under parity, so YsYµ, 
transform like an axial vector that has even parity. 

The spin algebra generated by the Pauli matrices is just a matrix representation of the 
four-dimensional Clifford algebra, while Hestenes and coworkers (loc. cit.) have developed 
in their geometric calculus a representation-free (that is, "coordinate-free") algebra that 
contains complex numbers, vectors, the quaternion subalgebra, and generalized cross prod­
ucts as directed areas (called bivectors). This algebraic-geometric framework is tailored to 
nonrelativistic quantum mechanics, where spinors acquire geometric aspects and the Gauss 
and Stokes theorems appear as components of a unified theorem. Their geometric algebra 
corresponding to the 16-dimensional Clifford algebra of Dirac y-matrices is the appropri­
ate coordinate-free framework for relativistic quantum mechanics and electrodynamics. 

The discussion of orthogonal matrices in Section 3.3 and unitary matrices in this sec­
tion is only a beginning. Further extensions are of vital concern in "elementary" particle 
physics. With the Pauli and Dirac matrices, we can develop spinor wave functions for elec­
trons, protons, and other (relativistic) spin½ particles. The coordinate system rotations lead 

to Di (a, {3, y), the rotation group usually represented by matrices in which the elements 
are functions of the Euler angles describing the rotation. The special unitary group SU(3) 
( composed of 3 x 3 unitary matrices with determinant + 1) has been used with considerable 
success to describe mesons and baryons involved in the strong interactions, a gauge theory 
that is now called quantum chromodynamics. These extensions are considered further in 
Chapter 4. 

Exercises 

3.4.1 Show that 

det(A*) = (detA)* = det(At). 

3.4.2 Three angular momentum matrices satisfy the basic commutation relation 

[Jx, Jy] = iJz 

( and cyclic permutation of indices). If two of the matrices have real elements, show that 
the elements of the third must be pure imaginary. 

3.4.3 Show that (AB) t = st At. 

3.4.4 A matrix C = sts. Show that the trace is positive definite unless Sis the null matrix, 
in which case trace (C) = 0. 

3.4.5 If A and B are Hermitian matrices, show that (AB + BA) and i (AB - BA) are also 
Hermitian. 

3.4.6 The matrix C is not Hermitian. Show that then C + ct and i (C - ct) are Hermitian. 
This means that a non-Hermitian matrix may be resolved into two Hermitian parts, 

C = ~ (C + ct) + ;i i (C - ct). 

This decomposition of a matrix into two Hermitian matrix parts parallels the decompo­
sition of a complex number z into x + iy, where x = (z + z*)/2 and y = (z - z*)/2i. 
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3.4.7 A and Bare two noncommuting Hermitian matrices: 

AB-BA=iC. 

Prove that C is Hermitian. 

3.4.8 Show that a Hermitian matrix remains Hermitian under unitary similarity transforma­
tions. 

3.4.9 Two matrices A and B are each Hermitian. Find a necessary and sufficient condition for 
their product AB to be Hermitian. 

3.4.10 

3.4.11 

3.4.12 

3.4.13 

ANS. [A, B] = 0. 

Show that the reciprocal (that is, inverse) of a unitary matrix is unitary. 

A particular similarity transformation yields 

A'= UAu- 1, 

A't = uAtu- 1 . 

If the adjoint relationship is preserved (At' = A't) and det U = 1, show that U must be 
unitary. 

Two matrices U and H are related by 

U = eiaH, 

with a real. (The exponential function is defined by a Maclaurin expansion. This will 
be done in Section 5.6.) 

(a) If His Hermitian, show that U is unitary. 
(b) If U is unitary, show that His Hermitian. (His independent of a.) 

Note. With H the Hamiltonian, 

yr(x, t) = U(x, t)'ljr(x, 0) = exp(-itH/li)yr(x, 0) 

is a solution of the time-dependent Schrodinger equation. U(x, t) = exp(-itH/li) is the 
"evolution operator." 

An operator T(t + c, t) describes the change in the wave function from t tot+ c. For c 
real and small enough so that c2 may be neglected, 

i 
T(t + c, t) = 1 - ,;cH(t). 

(a) If Tis unitary, show that His Hermitian. 
(b) If H is Hermitian, show that T is unitary. 

Note. When H(t) is independent of time, this relation may be put in exponential form­
Exercise 3.4.12. 
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3.4.14 

3.4.15 

3.4.16 

3.4.17 

3.4.18 

3.4.19 

3.4.20 

3.4.21 

3.4.22 

3.4.23 

Show that an alternate form, 

1 - icH(t)/2/i 
T(t + c, t) = 1 + icH(t)/2/i' 

agrees with the T of part (a) of Exercise 3.4.13, neglecting c2 , and is exactly unitary 
(for H Hermitian). 

Prove that the direct product of two unitary matrices is unitary. 

Show that y5 anticommutes with all four yJL. 

Use the four-dimensional Levi-Civita symbol cJ...µ,vp with co123 = -1 (generalizing 
Eqs. (2.93) in Section 2.9 to four dimensions) and show that (i) 2ysaµ,v = -iEµ,vaf3a<43 

using the summation convention of Section 2.6 and (ii) YJ...Yµ,Yv = gJ...µ,Yv - gJ...vYµ, + 
gµ,vYJ... + icJ...µ,vpyPy5. Define Yµ, = gµ,vYv using gµ,v = gµ,v to raise and lower indices. 

Evaluate the following traces: (see Eq. (3.123) for the notation) 

(i) trace(y • ay • b) = 4a • b, 
(ii) trace(y • ay • by • c) = 0, 

(iii) trace(y • ay • by • cy • d) = 4(a •be• d - a • cb • d + a •db• c), 
(iv) trace(y5 y · ay · by · cy · d) = 4icaf3µ,vaa bf3 cµ,dv. 

Show that (i) Yµ,YaYµ, = -2ya, (ii) Yµ,Yayf3yµ, = 4gaf3, and (iii) Yµ,Yayf3yvyµ, = 
-2yvyf3ya. 

If M = ½O + ys), show that 

M2 =M. 

Note that y5 may be replaced by any other Dirac matrix (any r; ofEq. (3.124)). If Mis 
Hermitian, then this result, M2 = M, is the defining equation for a quantum mechanical 
projection operator. 

Show that 

<t, X <t, = 2iu @ lz, 

where « = YOY is a vector 

« = (a1, a2, a3). 

Note that if« is a polar vector (Section 2.4), then u is an axial vector. 

Prove that the 16 Dirac matrices form a linearly independent set. 

If we assume that a given 4 x 4 matrix A (with constant elements) can be written as a 
linear combination of the 16 Dirac matrices 

16 

A= I:c;r;, 
i=l 

show that 

c; ~ trace(Ar;). 
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3.4.24 If C = iy2y 0 is the charge conjugation matrix, show that Cyµc- 1 = -ylL, where 
- indicates transposition. 

3.4.25 Let x~ = A~xv be a rotation by an angle 0 about the 3-axis, 

I 
xo =xo, xi= x1 cos0 +x2sin0, 

x; = -x1 sin0 +x2cos0, 

Use R = exp(i0a 12/2) = cos0/2 + ia 12 sin0/2 (see Eq. (3.170b)) and show that 
the y's transform just like the coordinates xJL, that is, A~Yv = R-1yµR, (Note that 
Yµ = gµvYv and that the yJL are well defined only up to a similarity transformation.) 
Similarly, if x' = Ax is a boost (pure Lorentz transformation) along the I-axis, that is, 

xb = xocosh{ -x1 sinh{, 

x; =Xz, 
xi= -xosinh{ +x1 cosh{, 

X~ =X3, 

with tanh{ = v/c and B = exp(-isa01 /2) = cosh{/2 - ia01 sinh{/2 (see 
Eq. (3.170b)), show that A~Yv = ByµB- 1. 

3.4.26 (a) Given r' = Ur, with U a unitary matrix and r a (column) vector with complex 
elements, show that the norm (magnitude) of r is invariant under this operation. 

(b) The matrix U transforms any column vector r with complex elements into r', 
leaving the magnitude invariant: rt r = r' tr'. Show that U is unitary. 

3.4.27 Write a subroutine that will test whether a complex n x n matrix is self-adjoint. In 
demanding equality of matrix elements aij = a&, allow some small tolerance c to com­
pensate for truncation error of the computer. 

3.4.28 Write a subroutine that will form the adjoint of a complex M x N matrix. 

3.4.29 (a) Write a subroutine that will take a complex M x N matrix A and yield the product 
AtA. 
Hint. This subroutine can call the subroutines of Exercises 3.2.41 and 3.4.28. 

(b) Test your subroutine by taking A to be one or more of the Dirac matrices, 
Eq. (3.124). 

3.5 DIAGONALIZATION OF MATRICES 

Moment of Inertia Matrix 

In many physical problems involving real symmetric or complex Hermitian matrices it is 
desirable to carry out a (real) orthogonal similarity transformation or a unitary transfor­
mation (corresponding to a rotation of the coordinate system) to reduce the matrix to a 
diagonal form, nondiagonal elements all equal to zero. One particularly direct example 
of this is the moment of inertia matrix I of a rigid body. From the definition of angular 
momentum L we have 

L=lw, (3,126) 
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w being the angular velocity. 19 The inertia matrix I is found to have diagonal components 

lxx = Lmi(rf-xf), and so on, (3.127) 

the subscript i referring to mass mi located at ri = (x;, y;, Zi ). For the nondiagonal com­
ponents we have 

(3.128) 

By inspection, matrix I is symmetric. Also, since I appears in a physical equation of the 
form (3.126), which holds for all orientations of the coordinate system, it may be consid­
ered to be a tensor (quotient rule, Section 2.3). 

The key now is to orient the coordinate axes (along a body-fixed frame) so that the 
lxy and the other nondiagonal elements will vanish. As a consequence of this orientation 
and an indication of it, if the angular velocity is along one such realigned principal axis, 
the angular velocity and the angular momentum will be parallel. As an illustration, the 
stability of rotation is used by football players when they throw the ball spinning about its 
long principal axis. 

Eigenvectors, Eigenvalues 

It is instructive to consider a geometrical picture of this problem. If the inertia matrix I is 
multiplied from each side by a unit vector of variable direction, fi = (a, {3, y), then in the 
Dirac bracket notation of Section 3.2, 

(filllfi) = I, (3.129) 

where / is the moment of inertia about the direction fi and a positive number (scalar). 
Carrying out the multiplication, we obtain 

I= lxxa2 + lyy{3 2 + lzzY 2 + 2lxyaf3 + 2lxzay + 2lyzf3Y, (3.130) 

a positive definite quadratic form that must be an ellipsoid (see Fig. 3.5). From analytic 
geometry it is known that the coordinate axes can always be rotated to coincide with the 
axes of our ellipsoid. In many elementary cases, especially when symmetry is present, these 
new axes, called the principal axes, can be found by inspection. We can find the axes by 
locating the local extrema of the ellipsoid in terms of the variable components of n, subject 
to the constraint fi.2 = 1. To deal with the constraint, we introduce a Lagrange multiplier ).. 
(Section 17.6). Differentiating (filllfi) - )..(filfi), 

~((filllfi) - )..(filfi)) = 2 L Ijknk - 2Anj = 0, j = 1,2, 3 (3.131) 
anj k 

yields the eigenvalue equations 

llfi)=Alfi). (3.132) 

19The moment of inertia matrix may also be developed from the kinetic energy of a rotating body, T = 1/2(wlllw}. 
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FIGURE 3.5 Moment of inertia ellipsoid. 

The same result can be found by purely geometric methods. We now proceed to develop 
a general method of finding the diagonal elements and the principal axes. 

If R- 1 = R is the real orthogonal matrix such that n' = Rn, or In') = Rln) in Dirac 
notation, are the new coordinates, then we obtain, using (n'IR = (nl in Eq. (3.132), 

(nllln) = (n'IRIRln') = I{n? + l~n;2 + I~n;2 , (3.133) 

where the I[> 0 are the principal moments of inertia. The inertia matrix I' in Eq. (3.133) 
is diagonal in the new coordinates, 

(
I' 

- I 
l'=RIR= ~ 

0 
I~ 
0 

Ifwe rewrite Eq. (3.134) using R- 1 = R in the form 

RI'= IR 

~)-
[' 
3 

(3.134) 

(3.135) 

and take R = (v1, v2, v3) to consist of three column vectors, then Eq. (3.135) splits up into 
three eigenvalue equations, 

Iv;= I[v;, i=l,2,3 (3.136) 

with eigenvalues I[ and eigenvectors v;. The names were introduced from the German 
literature on quantum mechanics. Because these equations are linear and homogeneous 
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(for fixed i), by Section 3.1 their determinants have to vanish: 

111 - I( 
/12 

/i3 

[13 

fi3 =0. 
h3 - I( 

(3.137) 

Replacing the eigenvalue I( by a variable ). times the unit matrix 1, we may rewrite 
Eq. (3.136) as 

I (l-).1)1v) =0.1 (3.136') 

The determinant set to zero, 

I 11 - A 1 I = 0, I (3.137') 

is a cubic polynomial in).; its three roots, of course, are the I(. Substituting one root at 
a time back into Eq. (3.136) (or (3.136')), we can find the corresponding eigenvectors. 
Because of its applications in astronomical theories, Eq. (3.137) (or (3.137')) is known as 
the secular equation.20 The same treatment applies to any real symmetric matrix I, except 
that its eigenvalues need not all be positive. Also, the orthogonality condition in Eq. (3.87) 
for R say that, in geometric terms, the eigenvectors Vi are mutually orthogonal unit vectors. 
Indeed they form the new coordinate system. The fact that any two eigenvectors Vi, v j are 
orthogonal if I( =I- 11 follows from Eq. (3.136) in conjunction with the symmetry of I by 
multiplying with Vi and v j, respectively, 

(3.138a) 

Since I( =1-1; and Eq. (3.138a) implies that u; - !()vi· Vj = 0, so Vi· Vj = 0. 
We can write the quadratic forms in Eq. (3.133) as a sum of squares in the original 

coordinates In), 

(3.138b) 

because the rows of the rotation matrix in n' = Rn, or 

(:l) = (:~: :) 
n; v3 · n 

componentwise, are made up of the eigenvectors v;. The underlying matrix identity, 

(3.138c) 

20Equation (3.126) will take on this form when w is along one of the principal axes. Then L = AW and lw =AW.In the mathe­
matics literature A is usually called a characteristic value, w a characteristic vector. 
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may be viewed as the spectral decomposition of the inertia tensor ( or any real symmetric 
matrix). Here, the word spectral is just another term for expansion in terms of its eigen­
values. When we multiply this eigenvalue expansion by (nl on the left and In} on the right 
we reproduce the previous relation between quadratic forms. The operator Pi = lvi} (vi I is 
a projection operator satisfying P/ = Pi that projects the ith component Wi of any vector 
lw} = Lj WjlVj} that is expanded in terms of the eigenvector basis lvj}. This is verified 
by 

Finally, the identity 

Pilw} = L Wjlvi}(vilvj} = wilvi} =Vi· wlvi}­
j 

expresses the completeness of the eigenvector basis according to which any vector lw} = 
Li wilvi} can be expanded in terms of the eigenvectors. Multiplying the completeness 
relation by lw} proves the expansion lw} = Li (vi lw} lvi}. 

An important extension of the spectral decomposition theorem applies to commuting 
symmetric (or Hermitian) matrices A, B: If [A, B] = 0, then there is an orthogonal (unitary) 
matrix that diagonalizes both A and B; that is, both matrices have common eigenvectors if 
the eigenvalues are nondegenerate. The reverse of this theorem is also valid. 

To prove this theorem we diagonalize A: Avi = aiVi. Multiplying each eigenvalue equa­
tion by B we obtain BAvi = ai Bvi = A(Bvi ), which says that Bvi is an eigenvector of A 
with eigenvalue ai. Hence Bvi = bi Vi with real bi. Conversely, if the vectors Vi are com­
mon eigenvectors of A and B, then ABvi = AbiVi = aibiVi = BAvi. Since the eigenvec­
tors Vi are complete, this implies AB= BA. 

Hermitian Matrices 

For complex vector spaces, Hermitian and unitary matrices play the same role as symmetric 
and orthogonal matrices over real vector spaces, respectively. First, let us generalize the 
important theorem about the diagonal elements and the principal axes for the eigenvalue 
equation 

I Air}= Air}, I (3.139) 

We now show that if A is a Hermitian matrix, 21 its eigenvalues are real and its eigenvectors 
orthogonal. 

Let Ai and A j be two eigenvalues and lri} and Ir j}, the corresponding eigenvectors of A, 
a Hermitian matrix. Then 

Alri} = Ailri}, 

Alrj} = Ajlrj}-

21 If A is real, the Hermitian requirement reduces to a requirement of symmetry. 

(3.140) 

(3.141) 
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Equation (3 .140) is multiplied by (r j I: 

(rjlAlri) = Ai(rjlri). 

Equation (3.141) is multiplied by (rd to give 

(rilAlrj) = Aj(rdrj)­

Taking the adjoint22 of this equation, we have 

(rj IAtlri) = A j (rj lri), 

or 

(rjlAlri) = Aj(rjlri) 

since A is Hermitian. Subtracting Eq. (3.145) from Eq. (3.142), we obtain 

(Ai -Aj)(rjlri) =0. 

(3.142) 

(3.143) 

(3.144) 

(3.145) 

(3.146) 

This is a general result for all possible combinations of i and j. First, let j = i. Then 
Eq. (3.146) becomes 

(Ai - A;)(rdri) = 0. (3.147) 

Since (ri lri) = 0 would be a trivial solution of Eq. (3.147), we conclude that 

(3.148) 

or Ai is real, for all i. 
Second, for i # j and Ai# Aj, 

(3.149) 

or 

(r1lri) =0, (3.150) 

which means that the eigenvectors of distinct eigenvalues are orthogonal, Eq. (3.150) being 
our generalization of orthogonality in this complex space. 23 

If Ai= AJ (degenerate case), lri) is not automatically orthogonal to lr1), but it may be 
made orthogonal. 24 Consider the physical problem of the moment of inertia matrix again. 
If x1 is an axis ofrotational symmetry, then we will find that A2 = A3. Eigenvectors lr2) and 
I r3) are each perpendicular to the symmetry axis, I r1), but they lie anywhere in the plane 
perpendicular to lr1); that is, any linear combination of lr2) and lr3) is also an eigenvector. 
Consider (a2lr2) + a3lr3)) with a2 and a3 constants. Then 

A(a2lr2) +a3lr3)) =a2A2lr2) +a3A3lr3) 

= A2(a2lr2) +a3lr3)), (3.151) 

22 Note (rjl = lrj)t for complex vectors. 
23The corresponding theory for differential operators (Sturm-Liouville theory) appears in Section 10.2. The integral equation 
analog (Hilbert-Schmidt theory) is given in Section 16.4. 
24we are assuming here that the eigenvectors of the n-fold degenerate >..; span the corresponding n-dimensional space. This 
may be shown by including a parameter s in the original matrix to remove the degeneracy and then letting s approach zero 
(compare Exercise 3.5.30). This is analogous to breaking a degeneracy in atomic spectroscopy by applying an external magnetic 
field (Zeeman effect). 
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as is to be expected, for x1 is an axis of rotational symmetry. Therefore, if lr1) and lr2) 
are fixed, lr3) may simply be chosen to lie in the plane perpendicular to lri) and also 
perpendicular to lr2). A general method of orthogonalizing solutions, the Gram-Schmidt 
process (Section 3.1), is applied to functions in Section 10.3. 

The set of n orthogonal eigenvectors lri) of our n x n Hermitian matrix A forms a 
complete set, spanning the n-dimensional (complex) space, Li lri) {ril = 1. This fact is 
useful in a variational calculation of the eigenvalues, Section 17 .8. 

The spectral decomposition of any Hermitian matrix A is proved by analogy with real 
symmetric matrices 

A = :I:>4-il ri) {ril, 
i 

with real eigenvalues Ai and orthonormal eigenvectors lri). 
Eigenvalues and eigenvectors are not limited to Hermitian matrices. All matrices have 

at least one eigenvalue and eigenvector. However, only Hermitian matrices have all eigen­
vectors orthogonal and all eigenvalues real. 

Anti-Hermitian Matrices 

Occasionally in quantum theory we encounter anti-Hermitian matrices: 

At =-A. 

Following the analysis of the first portion of this section, we can show that 

a. The eigenvalues are pure imaginary (or zero). 
b. The eigenvectors corresponding to distinct eigenvalues are orthogonal. 

The matrix R formed from the normalized eigenvectors is unitary. This anti-Hermitian 
property is preserved under unitary transformations. 

Example 3.5.1 

Let 

EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX 

A-G 
1 n 0 
0 

The secular equation is 

-}._ 1 0 
1 -)._ 0 =0, 
0 0 -)._ 

or 

-A(A2 - 1) =0, 

(3.152) 

(3.153) 

(3.154) 
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expanding by minors. The roots are A = -1, 0, 1. To find the eigenvector corresponding to 
A = -1, we substitute this value back into the eigenvalue equation, Eq. (3.139), 

(3.155) 

With A = -1, this yields 

x+ y=0, z=0. (3.156) 

Within an arbitrary scale factor and an arbitrary sign (or phase factor), (r1 I= (1, -1, 0). 
Note that (for real Ir} in ordinary space) the eigenvector singles out a line in space. The 
positive or negative sense is not determined. This indeterminancy could be expected if we 
noted that Eq. (3.139) is homogeneous in Ir}. For convenience we will require that the 
eigenvectors be normalized to unity, (r1 lr1} = 1. With this condition, 

( 1 -1 ) 
(r1 I = ,/2, ,/2, o (3.157) 

is fixed except for an overall sign. For A = 0, Eq. (3.139) yields 

y=0, X =0, (3.158) 

(r2 I = (0, 0, 1) is a suitable eigenvector. Finally, for A = 1, we get 

-x+y=0, z=0, (3.159) 

or 

(3.160) 

The orthogonality of r1, r2, and r3, corresponding to three distinct eigenvalues, may be 
easily verified. 

The corresponding spectral decomposition gives 

1 0) 0 0 . 
0 0 ■ 
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Example 3.5.2 DEGENERATE EIGENVALUES 

Consider 

The secular equation is 

or 

1-},. 0 
0 -},. 
0 1 

0 
1 =0 

-,>,. 

a degenerate case. If),,= -1, the eigenvalue equation (3.139) yields 

2x=0, 

A suitable normalized eigenvector is 

y +z =0. 

( 1 -1) 
(r1 I = o, ,,/2, ,,/2 . 

For ),, = 1, we get 

-y+z=0. 

(3.161) 

(3.162) 

(3.163) 

(3.164) 

(3.165) 

(3.166) 

Any eigenvector satisfying Eq. (3.166) is perpendicular to r1. We have an infinite number 
of choices. Suppose, as one possible choice, r2 is taken as 

(r2I = (o, ~, ~), (3.167) 

which clearly satisfies Eq. (3.166). Then r3 must be perpendicular to r1 and may be made 
perpendicular to r2 by25 

r3=r1 xr2=(l,0,0). (3.168) 

The corresponding spectral decomposition gives 

A~-(o. ~--~) ( _\) + (o. ~• ~) (;,) +(1,0,0) m 
=-(~ ; 

0 -½ 
0 ) (0 0 0) ( 1 O 0) ( 1 -½ + 0 ½ ½ + 0 0 0 = 0 
l oll 000 0 
2 2 2 

0 0) 
0 1 . 
1 0 ■ 

25The use of the cross product is limited to three-dimensional space (see Section 1.4). 
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Functions of Matrices 

Polynomials with one or more matrix arguments are well defined and occur often. Power 
series of a matrix may also be defined, provided the series converge (see Chapter 5) for 
each matrix element. For example, if A is any n x n matrix, then the power series 

00 1 
exp(A) = L ~Ai, 

}=0 J. 

sin(A) = ~ (-l)i A2i+l 
~ (2. + 1)! ' 
}=0 J 

00 (-1)1 . 
cos(A) = I:--A2J 

}=0 (2j)! 

(3.169a) 

(3.169b) 

(3.169c) 

are well defined n x n matrices. For the Pauli matrices ak the Euler identity for real 0 and 
k = 1, 2, or 3 

I exp(iak0)=12cos0+iaksin0, I (3.17Oa) 

follows from collecting all even and odd powers of 0 in separate series using af = 1. For 
the 4 x 4 Dirac matrices alk = 1 with (a1k)2 = 1 if j # k = 1, 2 or 3 we obtain similarly 
(without writing the obvious unit matrix 14 anymore) 

exp(ialke) = cos0 + ialk sin 0, (3.17Ob) 

while 

(3.170c) 

holds for real l; because (ia0k)2 = 1 fork= 1, 2, or 3. 
For a Hermitian matrix A there is a unitary matrix U that diagonalizes it; that is, UAUt = 

[a1, a2, ... , an]- Then the trace formula 

det(exp(A)) = exp(trace(A)) (3.171) 

is obtained (see Exercises 3.5.2 and 3.5.9) from 

det( exp(A)) = det(U exp(A)Ut} = det( exp(UAUt}) 

= detexp[a1, a2, ... , an]= det[ea1 , ea2 , ••• , ea"] 

= TT ea; =exp(La;) =exp(trace(A)}, 

using UAiut = (UAUti in the power series Eq. (3.169a) for exp(UAUt) and the product 
theorem for determinants in Section 3.2. 
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This trace formula is a special case of the spectral decomposition law for any (infinitely 
differentiable) function f (A) for Hermitian A: 

f(A) = Lf().;)lri)(rd, 
i 

where Ir;} are the common eigenvectors of A and Aj. This eigenvalue expansion follows 

from Ailr;} = ;i,,{ Ir;}, multiplied by t<j)(O)/j! and summed over j to form the Taylor 
expansion off().;) and yield f(A)lr;} = f().;)lr;}. Finally, summing over i and using 
completeness we obtain f(A) Li lr;}(r;I = Li f().;)lr;}(rd = f(A), q.e.d. 

Example 3.5.3 ExPONENTIAL OF A DIAGONAL MATRIX 

If the matrix A is diagonal like 

a3 = (~ ~1), 
then its nth power is also diagonal with its diagonal, matrix elements raised to the nth 
power: 

n (1 0 ) (a3) = O (-l)n • 

Then summing the exponential series, element for element, yields 

eu3 = (L~o ~ "00 O (-It)=(~ ~). 
L...n=O n! e 

If we write the general diagonal matrix as A = [ a 1 , a2, ... , an] with diagonal elements a i , 
then Am = [aj, a2, ... , a;:1], and summing the exponentials elementwise again we obtain 
eA = [ea', ea2, ... , ea•]. 

Using the spectral decomposition law we obtain directly 

eu3 =e+1(1,0)G) +e-1(0, 1)(~) = (~ e~1). 

Another important relation is the Baker-Hausdorff formula, 

1 
exp(iG)Hexp(-iG) = H + [iG, H] + 2[iG, [iG, H]] + · · ·, 

■ 

(3.172) 

which follows from multiplying the power series for exp(iG) and collecting the terms with 
the same powers of iG. Here we define 

[G, H] = GH - HG 

as the commutator of G and H. 
The preceding analysis has the advantage of exhibiting and clarifying conceptual rela­

tionships in the diagonalization of matrices. However, for matrices larger than 3 x 3, or 
perhaps 4 x 4, the process rapidly becomes so cumbersome that we tum to computers and 
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iterative techniques.26 One such technique is the Jacobi method for determining eigenval­
ues and eigenvectors of real symmetric matrices. This Jacobi technique for determining 
eigenvalues and eigenvectors and the Gauss-Seidel method of solving systems of simulta­
neous linear equations are examples of relaxation methods. They are iterative techniques 
in which the errors may decrease or relax as the iterations continue. Relaxation methods 
are used extensively for the solution of partial differential equations. 

Exercises 

3.5.1 (a) Starting with the orbital angular momentum of the ith element of mass, 

derive the inertia matrix such that L = lw, IL) = I lw). 
(b) Repeat the derivation starting with kinetic energy 

3.5.2 Show that the eigenvalues of a matrix are unaltered if the matrix is transformed by a 
similarity transformation. 
This property is not limited to symmetric or Hermitian matrices. It holds for any ma­
trix satisfying the eigenvalue equation, Eq. (3.139). If our matrix can be brought into 
diagonal form by a similarity transformation, then two immediate consequences are 

1. The trace (sum of eigenvalues) is invariant under a similarity transformation. 
2. The determinant (product of eigenvalues) is invariant under a similarity transfor­

mation. 

Note. The invariance of the trace and determinant are often demonstrated by using the 
Cayley-Hamilton theorem: A matrix satisfies its own characteristic (secular) equation. 

3.5.3 As a converse of the theorem that Hermitian matrices have real eigenvalues and that 
eigenvectors corresponding to distinct eigenvalues are orthogonal, show that if 

(a) the eigenvalues of a matrix are real and 
(b) the eigenvectors satisfy rJ rj = Oij = (r; lrj ), 

then the matrix is Hermitian. 

3.5.4 Show that a real matrix that is not symmetric cannot be diagonalized by an orthogonal 
similarity transformation. 
Hint. Assume that the nonsymmetric real matrix can be diagonalized and develop a 
contradiction. 

26In higher-dimensional systems the secular equation may be strongly ill-conditioned with respect to the determination of its 
roots (the eigenvalues). Direct solution by computer may be very inaccurate. Iterative techniques for diagonalizing the original 
matrix are usually preferred. See Sections 2.7 and 2.9 of Press et al., Joe. cit. 



3.5 Diagonalization of Matrices 227 

3.5.5 The matrices representing the angular momentum components Ix, ly, and lz are all 
Hermitian. Show that the eigenvalues of J2 , where J2 = f; + 1; + I;, are real and 
nonnegative. 

3.5.6 A has eigenvalues A; and corresponding eigenvectors Ix;}. Show that A- 1 has the same 
eigenvectors but with eigenvalues A11• 

3.5.7 A square matrix with zero determinant is labeled singular. 

3.5.8 

3.5.9 

3.5.10 

3.5.11 

3.5.12 

3.5.13 

(a) If A is singular, show that there is at least one nonzero column vector v such that 

Alv} =0. 

(b) If there is a nonzero vector Iv} such that 

Alv} =0, 

show that A is a singular matrix. This means that if a matrix ( or operator) has zero 
as an eigenvalue, the matrix (or operator) has no inverse and its determinant is 
zero. 

The same similarity transformation diagonalizes each of two matrices. Show that the 
original matrices must commute. (This is particularly important in the matrix (Heisen­
berg) formulation of quantum mechanics.) 

Two Hermitian matrices A and B have the same eigenvalues. Show that A and B are 
related by a unitary similarity transformation. 

Find the eigenvalues and an orthonormal ( orthogonal and normalized) set of eigenvec­
tors for the matrices of Exercise 3.2.15. 

Show that the inertia matrix for a single particle of mass mat (x, y, z) has a zero de­
terminant. Explain this result in terms of the invmiance of the determinant of a matrix 
under similarity transformations (Exercise 3 .3 .10) and a possible rotation of the coordi­
nate system. 

A certain rigid body may be represented by three point masses: m1 = 1 at (1, 1, -2), 
m2 = 2 at (-1, -1, 0), and m3 = 1 at (1, 1, 2). 

(a) Find the inertia matrix. 
(b) Diagonalize the inertia matrix, obtaining the eigenvalues and the principal axes (as 

orthonormal eigenvectors). 

Unit masses are placed as shown in Fig. 3.6. 

(a) Find the moment of inertia matrix. 
(b) Find the eigenvalues and a set of orthonormal eigenvectors. 
(c) Explain the degeneracy in terms of the symmetry of the system. 

ANS. I= (~1 
-1 

-1 
4 

-1 

-1) -1 
4 

At =2 
r, = (1/J3°, 1/J3°, 1/J3°) 
A2 = A3 = 5. 
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3.5.14 

3.5.15 

3.5.16 

3.5.17 

(I, o, 1) T 
I 

X 

/ 

/ 
/ 

/ 
/ 

z 

- - - - -f(0, I, 1) 

~---/~------...y 

/ 
/ 

/ 
/ 

-----• 
(I, I, 0) 

FIGURE 3.6 Mass sites for inertia tensor. 

A mass m1 = 1/2 kg is located at (1, 1, 1) (meters), a mass m2 = 1/2 kg is at 
( -1, -1, -1). The two masses are held together by an ideal (weightless, rigid) rod. 

(a) Find the inertia tensor of this pair of masses. 
(b) Find the eigenvalues and eigenvectors of this inertia matrix. 
(c) Explain the meaning, the physical significance of the).= 0 eigenvalue. What is 

the significance of the corresponding eigenvector? 
( d) Now that you have solved this problem by rather sophisticated matrix techniques, 

explain how you could obtain 

(1) ). = 0 and).=? - by inspection (that is, using common sense). 
(2) r.i..=0 =? - by inspection (that is, using freshman physics). 

Unit masses are at the eight comers of a cube ( ± 1, ± 1, ± 1). Find the moment of inertia 
matrix and show that there is a triple degeneracy. This means that so far as moments of 
inertia are concerned, the cubic structure exhibits spherical symmetry. 
Find the eigenvalues and corresponding orthonormal eigenvectors of the following ma­
trices (as a numerical check, note that the sum of the eigenvalues equals the sum of the 
diagonal elements of the original matrix, Exercise 3.3.9). Note also the correspondence 
between det A= 0 and the existence of).= 0, as required by Exercises 3.5.2 and 3.5.7. 

(1 0 1) 
A= 0 1 0 . 

1 0 1 

,/2 
0 
0 

ANS. A=O, 1,2. 

ANS.).=-1,0,2. 
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3.5.18 A=G 1 0) 
0 1 . 
1 1 

ANS.;>._= -l, l, 2. 

3.5.19 A=(~ v'8 :;s) 1 

v'8 
ANS.;>._= _ 3, l, S. 

3.5.20 A=G 
0 

D 1 
1 

ANS.A=0,l, 2. 

3.5.21 (1 0 O) 
A= 0 1 v'2 . 

0 v'2 0 

ANS.;>._= -1, l, 2. 

3.5.22 (0 1 0) 
A= 1 0 1 . 

0 1 o 

ANS. ;>._ = -...;'2, 0, ...;'2. 

3.5.23 (2 0 0) 
A= 0 1 1 . 

0 1 1 

ANS. ;>._ = 0, 2, 2. 

3.5.24 

ANS.)..=-1 -1 2 ' ' . 

3.5.25 A= (~1 ~l =~) 
-1 -1 1 . 

ANS.;>._= -l, 2, 2. 

3.5.26 A=(: : D· 
ANS.;>._= o, O, 3. 
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3.5.27 

3.5.28 

3.5.29 

3.5.30 

3.5.31 

3.5.32 

3.5.33 

A=G 
0 

D 1 
0 

ANS . .11. = 1, 1, 6. 

A=O 
1 

i) 1 
0 

ANS . .11. =0,0, 2. 

A=(~ 0 1) 3 

v'3 0 

ANS . .11. = 2, 3, 6. 

(a) Determine the eigenvalues and eigenvectors of 

(! ~)-
Note that the eigenvalues are degenerate for c = 0 but that the eigenvectors are 
orthogonal for all c # 0 and c ~ 0. 

(b) Determine the eigenvalues and eigenvectors of 

Note that the eigenvalues are degenerate for c = 0 and that for this (nonsymmetric) 
matrix the eigenvectors ( c = 0) do not span the space. 

(c) Find the cosine of the angle between the two eigenvectors as a function of c for 
0 _:'S c _:'S 1. 

(a) Take the coefficients of the simultaneous linear equations of Exercise 3.1.7 to be 
the matrix elements aij of matrix A (symmetric). Calculate the eigenvalues and 
eigenvectors. 

(b) Form a matrix R whose columns are the eigenvectors of A, and calculate the triple 
matrix product RAR. 

Repeat Exercise 3.5.31 by using the matrix of Exercise 3.2.39. 

Describe the geometric properties of the surface 

x 2 + 2xy + 2y2 + 2yz + z2 = 1. 

ANS . .11. = 3.33163. 

How is it oriented in three-dimensional space? Is it a conic section? If so, which kind? 
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Table 3.1 

Matrix 

Hermitian 
Anti-Hermitian 
Unitary 
Normal 

Eigenvalues 

Real 
Pure imaginary ( or zero) 
Unit magnitude 
If A has eigenvalue 1, 
At has eigenvalue A* 

Eigenvectors 
(for different eigenvalues) 

Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
A and At have the 
same eigenvectors 

For a Hermitian n x n matrix A with distinct eigenvalues ).. j and a function f, show 
that the spectral decomposition law may be expressed as 

n TT·...i:-(A-Aj) 
f(A)=Lf(Aj) Ir] • 

j=I H1/Aj -Aj) 

This formula is due to Sylvester. 

3.6 NORMAL MATRICES 

In Section 3.5 we concentrated primarily on Hermitian or real symmetric matrices and 
on the actual process of finding the eigenvalues and eigenvectors. In this section27 we 
generalize to normal matrices, with Hermitian and unitary matrices as special cases. The 
physically important problem of normal modes of vibration and the numerically important 
problem of ill-conditioned matrices are also considered. 

A normal matrix is a matrix that commutes with its adjoint, 

[A, At] =0. 

Obvious and important examples are Hermitian and unitary matrices. We will show that 
normal matrices have orthogonal eigenvectors (see Table 3.1). We proceed in two steps. 

I. Let A have an eigenvector Ix) and corresponding eigenvalue A. Then 

Alx) = )..Ix) (3.173) 

or 

(A- Al)lx) = 0. (3.174) 

For convenience the combination A - Al will be labeled B. Taking the adjoint of 
Eq. (3.174), we obtain 

(3.175) 

Because 

27 Normal matrices are the largest class of matrices that can be diagonalized by unitary transformations. For an extensive discus­
sion of normal matrices, see P. A. Macklin, Normal matrices for physicists. Am. J. Phys. 52: 513 ( 1984 ). 
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we have 

[B, st]= 0. (3.176) 

The matrix B is also normal. 
From Eqs. (3.174) and (3.175) we form 

(x1sts1x} = 0. (3.177) 

This equals 

(xi sst Ix} = o (3.178) 

by Eq. (3.176). Now Eq. (3.178) may be rewritten as 

(Btlx}) t (Btlx}) = 0. (3.179) 

Thus 

(3.180) 

We see that for normal matrices, At has the same eigenvectors as A but the complex con­
jugate eigenvalues. 

II. Now, considering more than one eigenvector-eigenvalue, we have 

Alxi} = )..ilxi}, 

Alxj} =AjlXj}­

Multiplying Eq. (3.182) from the left by (xi I yields 

(xilAlxj} = Aj(xilxj}­

Taking the transpose ofEq. (3.181), we obtain 

(xilA= (Atlxi}t 

(3.181) 

(3.182) 

(3.183) 

(3.184) 

From Eq. (3.180), with At having the same eigenvectors as A but the complex conjugate 
eigenvalues, 

(Atlxi})t = (A71xd)t =Ai(xd. 

Substituting into Eq. (3.183) we have 

Ai(Xi!Xj} =Aj(Xi!Xj} 

or 

(3.185) 

(3.186) 

This is the same as Eq. (3.149). 
For Ai #-Aj, 

(XjlXi} =0. 

The eigenvectors corresponding to different eigenvalues of a normal matrix are orthogo­
nal. This means that a normal matrix may be diagonalized by a unitary transformation. The 
required unitary matrix may be constructed from the orthonormal eigenvectors as shown 
earlier, in Section 3.5. 

The converse of this result is also true. If A can be diagonalized by a unitary transfor­
mation, then A is normal. 
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Normal Modes of Vibration 

We consider the vibrations of a classical model of the CO2 molecule. It is an illustration of 
the application of matrix techniques to a problem that does not start as a matrix problem. It 
also provides an example of the eigenvalues and eigenvectors of an asymmetric real matrix. 

Example 3.6.1 NORMAL MODES 

Consider three masses on the x-axis joined by springs as shown in Fig. 3.7. The spring 
forces are assumed to be linear (small displacements, Hooke's law), and the mass is con­
strained to stay on the x-axis. 

Using a different coordinate for each mass, Newton's second law yields the set of equa­
tions 

k 
i1 = --(x1 -xi) 

M 
.. k k 
xi = - - (xi - xi) - - (xi - x3) 

m m 

k 
x3 = --(x3 -xz). 

M 

(3.187) 

The system of masses is vibrating. We seek the common frequencies, w, such that all 
masses vibrate at this same frequency. These are the normal modes. Let 

i=l,2,3. 

Substituting this set into Eq. (3.187), we may rewrite it as 

(3.188) 

with the common factor eiwt divided out. We have a matrix-eigenvalue equation with the 
matrix asymmetric. The secular equation is 

M 

.!.. _w2 
M 

_}5_ 
m 

0 

k -M 
'J! -w2 
m 

k -M 

m 

0 
_}5_ 

m 

.!.. -w2 
M 

=0. 

FIGURE 3.7 Double oscillator. 

(3.189) 

M 
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This leads to 

The eigenvalues are 

w2 =0, 

all real. 

k 

M' 
k 2k 
M+ m' 

The corresponding eigenvectors are determined by substituting the eigenvalues back into 
Eq. (3.188) one eigenvalue at a time. For w2 = 0, Eq. (3.188), yields 

x1 -x2 =0, -x1+2x2-x3=0, -x2 +x3 =0. 

Then we get 

Xl =X2 =X3. 

This describes pure translation with no relative motion of the masses and no vibration. 
For w2 = k/ M, Eq. (3.188) yields 

x1 =-x3, x2 =0. 

The two outer masses are moving in opposite direction. The central mass is stationary. 
For w2 = k / M + 2k / m, the eigenvector components are 

x1 =x3, 
2M 

x2=--x1. 
m 

The two outer masses are moving together. The central mass is moving opposite to the two 
outer ones. The net momentum is zero. 

Any displacement of the three masses along the x-axis can be described as a linear 
combination of these three types of motion: translation plus two forms of vibration. ■ 

Ill-Conditioned Systems 

A system of simultaneous linear equations may be written as 

Alx} = IY} or (3.190) 

with A and IY} known and Ix} unknown. When a small error in IY} results in a larger error 
in Ix}, then the matrix A is called ill-conditioned. With 18x} an error in Ix} and 18x} an error 
in IY}, the relative errors may be written as 

[ (8xl8x}] 112 [ (8yl8y}] 112 
-- <K(A) --

(xix} - (yly} 
(3.191) 

Here K (A), a property of matrix A, is labeled the condition number. For A Hermitian one 
form of the condition number is given by28 

K (A) = IA I max. 
IA I min 

(3.192) 

28G. E. Forsythe, and C. B. Moler, Computer Solution of Linear Algebraic Systems. Englewood Cliffs, NJ, Prentice Hall (1967). 
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An approximate form due to Turing29 is 

K(A) =n[Aij]max[A~1Jmax' (3.193) 

in which n is the order of the matrix and [Aij ]max is the maximum element in A. 

Example 3.6.1 AN ILL-CONDITIONED MATRIX 

A common example of an ill-conditioned matrix is the Hilbert matrix, H;j = (i + j - 1 )-1. 

The Hilbert matrix of order 4, H4, is encountered in a least-squares fit of data to a third­
degree polynomial. We have 

I I 
2 3 
I I 
3 4 
I I 
4 3 
1 l 
3 6 !l-

The elements of the inverse matrix ( order n) are given by 

Forn =4, 

_ 1 (-li+i (n+i-l)!(n+j-1)! 
(Hn );j = i + j - 1 · [(i - l)!(j - 1)!]2(n - i)!(n - j)! · 

( 

16 

H-1 _ -120 
4 - 240 

-140 

-120 
1200 

-2700 
1680 

240 
-2700 
6480 

-4200 

-140) 1680 
-4200 . 
2800 

From Eq. (3.193) the Turing estimate of the condition number for H4 becomes 

Kruring = 4 x 1 x 6480 

= 2.59 X 104. 

(3.194) 

(3.195) 

(3.196) 

This is a warning that an input error may be multiplied by 26,000 in the calculation 
of the output result. It is a statement that H4 is ill-conditioned. If you encounter a highly 
ill-conditioned system, you have two alternatives (besides abandoning the problem). 

(a) Try a different mathematical attack. 
(b) Arrange to carry more significant figures and push through by brute force. 

As previously seen, matrix eigenvector-eigenvalue techniques are not limited to the so­
lution of strictly matrix problems. A further example of the transfer of techniques from one 
area to another is seen in the application of matrix techniques to the solution of Fredholm 
eigenvalue integral equations, Section 16.3. In tum, these matrix techniques are strength­
ened by a variational calculation of Section 17 .8. ■ 

29Compare J. Todd, The Condition of the Finite Segments of the Hilben Matrix, Applied Mathematics Series No. 313. Washing­
ton, DC: National Bureau of Standards. 
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Exercises 

3.6.1 Show that every 2 x 2 matrix has two eigenvectors and corresponding eigenvalues. The 
eigenvectors are not necessarily orthogonal and may be degenerate. The eigenvalues are 
not necessarily real. 

3.6.2 As an illustration of Exercise 3.6.1, find the eigenvalues and corresponding eigenvectors 
for 

(i ~)-
Note that the eigenvectors are not orthogonal. 

ANS. >..1 = 0, r1 = (2, -1); 
>..2 =4, r2 = (2, 1). 

3.6.3 If A is a 2 x 2 matrix, show that its eigenvalues >.. satisfy the secular equation 

>.. 2 - >.. trace(A) + detA = 0. 

3.6.4 Assuming a unitary matrix U to satisfy an eigenvalue equation Ur= >..r, show that the 
eigenvalues of the unitary matrix have unit magnitude. This same result holds for real 
orthogonal matrices. 

3.6.5 Since an orthogonal matrix describing a rotation in real three-dimensional space is a 
special case of a unitary matrix, such an orthogonal matrix can be diagonalized by a 
unitary transformation. 

(a) Show that the sum of the three eigenvalues is 1 + 2cos<p, where <pis the net angle 
of rotation about a single fixed axis. 

(b) Given that one eigenvalue is 1, show that the other two eigenvalues must be eirp 

and e-irp_ 

Our orthogonal rotation matrix (real elements) has complex eigenvalues. 

3.6.6 A is an nth-order Hermitian matrix with orthonormal eigenvectors Ix;} and real eigen­
values >..1 :::: >..2:::: >..3:::: ···::::An. Show that for a unit magnitude vector IY}, 

3.6.7 A particular matrix is both Hermitian and unitary. Show that its eigenvalues are all ±1. 
Note. The Pauli and Dirac matrices are specific examples. 

3.6.8 For his relativistic electron theory Dirac required a set of four anticommuting matrices. 
Assume that these matrices are to be Hermitian and unitary. If these are n x n matrices, 
show that n must be even. With 2 x 2 matrices inadequate (why?), this demonstrates that 
the smallest possible matrices forming a set of four anticommuting, Hermitian, unitary 
matrices are 4 x 4. 
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3.6.9 A is a normal matrix with eigenvalues An and orthonormal eigenvectors lxn)- Show that 
A may be written as 

3.6.10 

3.6.11 

n 

Hint. Show that both this eigenvector form of A and the original A give the same result 
acting on an arbitrary vector ly). 

A has eigenvalues 1 and -1 and corresponding eigenvectors (b} and{?). Construct A. 

ANS. A= ( ~ ~l )-

A non-Hermitian matrix A has eigenvalues Ai and corresponding eigenvectors lui)- The 
adjoint matrix At has the same set of eigenvalues but different corresponding eigen­
vectors, lvi)- Show that the eigenvectors form a biorthogonal set, in the sense that 

(viluj) = 0 

3.6.12 You are given a pair of equations: 

Alfn) = Anl~) 

Al~)= Anlfn) with A real. 

(a) Prove that lfn) is an eigenvector of (.A.A) with eigenvalue A~. 

(b) Prove that I~) is an eigenvector of (AA) with eigenvalue A~. 
(c) State how you know that 

(1) The lfn) form an orthogonal set. 
(2) The lgn) form an orthogonal set. 
(3) A~ is real. 

3.6.13 Prove that A of the preceding exercise may be written as 

n 

with the I~) and (fn I normalized to unity. 
Hint. Expand your arbitrary vector as a linear combination of lfn)-

3.6.14 Given 

1 (2 2) 
A= .js 1 -4 ' 

(a) Construct the transpose A and the symmetric forms AA and AA. 
(b) From A.A.I~)= A~I~) find An and I~)- Normalize the l~)-
(c) From Mlfn) = A~I~) find An [same as (b)] and lfn)- Normalize the lfn)­

(d) VerifythatAlfn) =Anl~) and.A.I~) =Anlfn)-
(e) Verify that A= Ln An lgn) (fn 1-
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3.6.15 

3.6.16 

Given the eigenvalues )._ 1 = 1, A2 = -1 and the corresponding eigenvectors 

(a) construct A; 
(b) verifythatAlfn} =Anlgn}; 
(c) verify that Al~} = An lfn}. 

and 

1 (1 ANS. A= v'2 l -1) 1 . 

This is a continuation of Exercise 3.4.12, where the unitary matrix U and the Hermitian 
matrix H are related by 

(a) If trace H = 0, show that <let U = + 1. 
(b) If detU = +1, show that trace H = 0. 

Hint. H may be diagonalized by a similarity transformation. Then interpreting the ex­
ponential by a Maclaurin expansion, U is also diagonal. The corresponding eigenvalues 
are given by u j = exp(iah J ). 
Note. These properties, and those of Exercise 3.4.12, are vital in the development of the 
concept of generators in group theory- Section 4.2. 

3.6.17 Ann x n matrix A has n eigenvalues Ai. If B = eA, show that B has the same eigen­
vectors as A, with the corresponding eigenvalues B; given by Bi = exp(Ai ). 
Note. eA is defined by the Maclaurin expansion of the exponential: 

A2 A3 
eA = 1 +A+-+-+··· 2! 3! . 

3.6.18 A matrix Pis a projection operator (see the discussion following Eq. (3.138c)) satisfying 
the condition 

3.6.19 

p2=P. 

Show that the corresponding eigenvalues (p2h. and PJ.. satisfy the relation 

(p2)J.. = (PJ..)2 = PJ..• 

This means that the eigenvalues of P are 0 and 1. 

In the matrix eigenvector-eigenvalue equation 

Air;}= Adri}, 

A is an n x n Hermitian matrix. For simplicity assume that its n real eigenvalues are 
distinct, AJ being the largest. If Ir} is an approximation to lr1}, 

n 

Ir}= lr1} + l)ilri}, 
i=2 



3.6.20 

3.6.21 

show that 
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FIGURE 3.8 Triple oscillator. 

(rlAlr} 
--- <).1 

(rlr} -

and that the error in AI is of the order 18;1 2 . Take 18;1 « 1. 
Hint. The n Ir;} form a complete orthogonal set spanning then-dimensional ( complex) 
space. 

Two equal masses are connected to each other and to walls by springs as shown in 
Fig. 3.8. The masses are constrained to stay on a horizontal line. 

(a) Set up the Newtonian acceleration equation for each mass. 
(b) Solve the secular equation for the eigenvectors. 
( c) Determine the eigenvectors and thus the normal modes of motion. 

Given a normal matrix A with eigenvalues ). j, show that At has eigenvalues ). j, its 

real part (A+ At)/2 has eigenvalues ffl(Aj), and its imaginary part (A-At)/2i has 
eigenvalues ~ (). j). 
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