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Abstra
t. The asymptoti
s of weak noise 
orre
tions to the spe
trum of the

evolution operator asso
iated with a nonlinear sto
hasti
 
ow with additive noise

is evaluated. The method works for arbitrary noise strength. The method also

yields estimates for the late terms in the asymptoti
 saddlepoint expansions.

z

1. Outline

(i) det(1 � zL) spe
trum by diagonalization in polynomial basis around x = 0:5 or

similar, 
ompared to PD latti
e 
al
ulation, or the small � perturbative results.

(a) for 0 < � < 1 Fokker-Plan
k kernel integrated (GP)

(ii) late terms in the asymptoti
 saddle expansion

(a) for parabola �xed point (repeats dominated by (f

00

)

r

term?)

(b) for the test Cantor set repeller?

(
) understand the signi�
an
e of the singulant [1℄

(iii) �nd 
rossover in the lo
al spe
trum from the detrministi
 to the pure Fokker-

Plan
k noise eigenvalues?

(iv) �nd a �nite-dimensional representation of the noisy evolution kernel

(v) have perhaps the best beer on �sterbro

z �le alf.nbi.dk:predrag/arti
les/asym/asym.tex
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2. Matrix representation of Perron-Frobenius operator

Here we take a di�erent approa
h and 
al
ulate the 
ontribution of a single periodi


orbits to the integrals by 
onstru
ting a matrix representation for the operator valid

globally.

As in physi
al appli
ations one studies smooth dynami
al observables, we restri
t

the spa
e that L a
ts on to smooth fun
tions. In pra
ti
e \real analyti
" means that

all expansions are polynomial expansions.

The main point is that the spe
tral determinants are entire fun
tions in any

dimension, provided that

1. the evolution operator is multipli
ative along the 
ow,

2. the symboli
 dynami
s is a �nite subshift,

3. all 
y
le eigenvalues are hyperboli
 (suÆ
iently bounded away from 1),

4. the map (or the 
ow) is real analyti
, ie. it has a pie
ewise analyti
 
ontinuation

to a 
omplex extension of the phase spa
e.

Finally we note that for 1-d repellers a diagonalization of an expli
it trun
ated

L

mn

matrix yields many more eigenvalues than the 
y
le expansions [17, 13℄. The

reasons why one persists anyway in using the periodi
 orbit theory are partially

aestheti
, and partially pragmati
. Expli
it L

mn

demands expli
it 
hoi
e of a basis and

is thus non-invariant, in 
ontrast to 
y
le expansions whi
h utilize only the invariant

information about the 
ow. In addition, we do not know how to 
onstru
t L

mn

for a

realisti
 
ow, su
h as the 3-disk problem, while the periodi
 orbit formulas are general

and straightforward to apply. The diÆ
ulty lies in the existen
e of a stable manifold,

in whi
h the invariant measure is smooth only below the level of the noise. It remains

to be seen whether a basis that assumes smoothness only in the unstable dire
tion,

and uses the periodi
 orbit 
overing for the stable dire
tion 
an work.

Why noise a
tually is supposed to be good or the real motivation:

In semi-
lassi
al theories one has to in
lude several periodi
 orbits in the


al
ualations. At �rst it seems that one has to use all periodi
 orbits, however, a 
ut-

o� is introdu
ed in ref. [25℄ 
orresponding to the Heisenberg time. A similar feature

should be expe
ted in systems with noise for the following physi
al reasons: Noise

itself should wash out the �ner details of phase spa
e making longer orbits irrelevant

for the des
ription. Also noise will smear out a singular wave fun
tion representing

say a parti
le and thereby regularize the theory [8℄.

3. Asymptotia

Another way of obtaining these results is to 
reate a global matrix represention of the

evolution operator using the ideas of ref. [17, 13℄. Here one expands the operator in

a polynomial basis around a suitable point. Be
ause of poor 
onvergen
e one has to

use a large basis - mu
h larger than a typi
al lo
al basis for a given orbit. The virtue

of this latter approa
h is that it gives the non-perturbative result with whi
h we 
an


ompare. The drawba
k of the method presented here is that we do not yet know how

to optimize the trun
ation of the polynomials used. In pra
ti
e, however, the method


onverges.
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3.1. Dettmannism I (Jan 26, '99)

With Gergely's more pre
ise �

12

, I return to my original formula,

�

2n

= 0:0527

n!32

n

2n� 1

whi
h gives �

12

= 3:70382� 10

9

, ie about 30 parts per million over Gergely's result.

Predi
tion:

�

14

= 7:02017� 10

11

:

3.2. Vattayismo I (Jan 29, '99)

I dis
ussed with Andre some of the basi
s: (we skipped Berry-Howls) et
.. The

re
ommended reading for tonight are refs. [2, 3, 4, 5℄. There is a 
ommon feature

in all this vast literature: in saddle point integrals of our kind the tail behaviour is

n!a

n

; a

n

+ 1=a

n

should form a line for large n.

Andre explained how to 
al
ulate the late terms in an expansion. He gave

quantum me
hani
al examples to illustrate it. He even made a �t to our numbers

based on the assumption that our expansion is not mu
h di�erent from a quantum

one. The result is

�

2

n = (n� 1)!32

n

(0:0269 + 0:00956=n+ :::) (1)

whi
h �tts well ex
ept to order 12 (n = 6). So, I assume that order 12 is still wrong,

at least Gergely's order 12. I have found that order 12 is negative while the rest is

positive. This is wrong as you will see later. Andre explained me that assymptoti


expansions 
annot behave di�erently than

C�(n+ �)a

n

:

For example �(2n+ �) 
annot happen! So, the right way to present result is to

plot the ratio of 
onsequtive terms and see if it is linear and �t (n+ �)a.

I have a 
ontour integral representation of trL for the 
orre
tions. The tri
k is

that instead of a 
ontour integral you 
ompute this integral via saddle point method

su
h that your large parameter is now the order of the expansion! OK. Then you �nd

that there is a single saddle in this 
ase. Interestingly, in our problems 
omplex or real

periodi
 orbits do not give saddle point 
ontributions to this (like it happens typi
ally

in QM). The saddle of interest in our 
ase is the point where f

0

(x) = 1 ! We negle
ted

this saddle so far. It is a solution of the saddle point equation

d

dx

(x� f(x))

2

= 2(x� f(x))(1� f

0

(x)) = 0: (2)

Another thing is that the fa
torial-like term in our expansion is due to the

fa
torials in the moments of the Gaussian. Combining these things you end up with

the formula

C(n� 1=2)!

2

n

(x� f(x))

2n+1

(3)

where x is the point f

0

(x) = 1. It is very likely that this formula, 
al
ulated for trL

is basi
ally valid for the leading eigenvalue. I still have to 
he
k this in detail.

One thing is now 
lear: It is reasonable to expe
t that within a few months we

will be able to 
ontrol the late terms. The strategy now is:
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n trL

0

0 0.11111111

1 0.07315957

2 0.20196660

3 1.00936323

4 7.34673301

5 70.3826169

6 837.075709

Table 1. �

2

; � � � ; �

6

perturbative 
oeÆ
ients for the �xed point 0.

(i) predi
t the behaviour of the late terms, te
hnology is available

(ii) push the 
al
ulation of 
orre
tions until the terms be
ome late ones

(iii) summ up the late terms and append (add) this as a 
orre
tion after the polinomial

formed by known terms.

We are probably lu
ky in this 
ase, sin
e the subleading stu� might be so mu
h

supressed that we 
an re
onstru
t the measured 
urve quite a

urately. An indi
ation

of this is that the 
onvergen
e of our series is very rapid to the asymptoti
 form. Andre

sees su
h a fast 
onvergen
e the �rst time. Usually tens or more terms are needed.

I learned a lot from Andre and he seems to be interested, although he �nds this

model ad-ho
. Also, I had enormous amount of dis
ussions with him on 
orre
tions

and polynomial basis and lo
al 
al
ulations sin
e 1996. I would put him on the list of

authors at an appropriate time. He would put a quality stamp on the next paper.

3.3. Vattayismo II (Jan 31, '99)

Following the explanations of Andre Voros I managed to derive a formula for the

asymptoti
s of the tra
e trL of the �xed points. Gergely produ
ed for me the data

for this quantity.

The numbers are given in table 1. The formula I derived is

C

2

n

(x� f(x))

2n

�(n+ 1=2)

p

n+ 1=2

(4)

where x is the point where f

0

(x) = 1. C also 
an be determined, I just had no time

yet. When you evaluate this numeri
ally you get for the exponential

2=(x� f(x))

2

= 2:35::: (5)

When I numeri
ally �t the series of table 1 with the formula


b

n

�(n+ a)=

p

n+ a (6)

I get

a = 0:497675� 0:00320107(0:643203%)

b = 2:35514� 0:00191123(0:0811514%)


 = 0:0436761� 5:14877e� 05(0:117885%) (7)

So, the theory works perfe
tly. A similar result should 
ome out for the other �xpoint

of the map. It seems that Gergelys numbers for this other �xpoint are not OK. For
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example, he got a negative number for n = 6, whi
h 
an be ex
luded. Also the

numbers after n = 4 are not 
onvin
ing, sin
e the ratio of 
onsequtive terms does not


onverge as it should. So, I suggest not to publish �

10

and �

12

yet. I hope to get a

formula for the eigenvalues very soon and write a note.

3.4. Vattayismo III (Feb 2, '99)

It seems that I get a "hyper tra
e formula" for the asymptoti
s.

The k-th �

2


orre
tion to trL

n

is a sum over noisy periodi
 orbits of length n

and has the form (only the k dependen
e is shown)

X

p

C

p

�(k + 1=2)(2=S

p

)

k

p

k + 1=2

(8)

where S

p

are the noise a
tions of the orbits. Noisy periodi
 orbits are the periodi


orbits of the 2D map

x

0

= f(x) + p

p

0

= p=f

0

(x) (9)

su
h that there is at least one nonzero p

n

of the periodi
 orbit (x

n

; p

n

). The noise

a
tion is S

p

=

P

n

p

2

n

=

P

n

(x

n+1

� f(x

n

))

2

. (For n = 1 we just get ba
k the result I

posted earlier.) For ordinary periodi
 orbits p

n

= 0. These do not qualify.

For the global eigenvalues 32

k

means that we will �nd an orbit with a
tion

S

p

= 1=16.

We are really 
lose to something great! For the �rst few k we 
an 
ompute the


orre
tions based on normal periodi
 orbits and then terminate the sequan
e with this

new tra
e formula, the larger k is the formula gets more a

urate.

4. Pallatables: matrix rep for arbitrary �, Nov 19, 1998

Let's investigate the 
on
rete form of the following matrix:

L

l;k

=

�

�

l

�y

0l

�

�

�

�

e

�

y

0

�f(y)

2�

2

�

�

�

�

y

k

k!

�

(10)

First, let's the a
t with the operator on

y

k

k!

:

Z

dye

�

y

0

�f(y)

2�

2

y

k

k!

=

Z

dz

e

�

z

2�

2

k!

�

f

�1

(y

0

� z)

�

k

j

dz

dy

j

= �

�

y(z) = f

�1

(y

0

� z)

dz

dy

= �f

0

(y) = �f

0

(f

�1

(y

0

� z))

�

� =

Z

dz

e

�

z

2�

2

k!

�

f

�1

(y

0

� z)

�

k

jf

0

(f

�1

(y

0

� z))j

=

Z

dz

e

�

z

2�

2

k!

�

f

�1

(y

0

� z)

�

k

(f

�1

)

0

(y

0

� z)

=

Z

dz

e

�

z

2�

2

(k + 1)!

d

dy

0

h

�

f

�1

(y

0

� z)

�

k+1

i

(11)

So the matrix element 
an be written:

L

l;k

=

�

l+1

�y

0l+1

"

Z

dz

e

�

z

2�

2

(k + 1)!

�

f

�1

(y

0

� z)

�

k+1

#

�

�

�

�

�

y

0

=0

(12)
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4.1. Pallatables: matrix rep for parabola �xed point, Nov 17, 1998

The tra
e of the Perron-Frobenius operator at �xed point:

trL =

Z

dxÆ

�

(f(x)� x) =

Z

dx

1

X

m=0

a

m

�

m

Æ

(m)

(f(x)� x) (13)


an be evaluated using

Z

dxÆ

(n)

(y) =

Z

dy

1

jy

0

(x)j

Æ

(n)

=

X

x:y(x)=0

(�1)

n

d

n

dy

n

1

jy

0

(x)j

: (14)

In general [?℄:

(�1)

n

d

n

dy

n

1

jy

0

j

=

1

jy

0

j

X

fk

l

g

(2n� k

1

)!

(�y

0

)

2n�k

1

Y

l�2

f

(l)

k

l

(l!)

k

l

k

l

!

; (15)

where the sum runs over all sets fk

l

g satisfying l � 1; k

l

� 0;

P

k

l

= n and

P

lk

l

= 2n.

If f is a parabola, then f

000

and higher derivatives are zero, so only thoose terms 
ount

in the expression above, where k

2

6= 0; k

i

= 0; i > 2. This means, that we have to look

for the set satisfying k

1

+ k

2

= n and k

1

+2k

2

= 2n, that is k

2

= n; k

1

= 0. So in 
ase

of parabola:

(�1)

n

d

n

dy

n

1

jy

0

j

=

1

jy

0

j

(2n)!

(y

0

)

2n

(f

00

)

n

2

n

n!

=

1

jy

0

j

(2n)!

n!

�

f

00

2(y

0

)

2

�

n

(16)

Let us suppose that the noise is a Gaussian noise (??). The tra
e is then

trL =

1

jy

0

j

+

1

jy

0

j

1

X

m=1

(4m)!

m!(2m)!

�

�f

00

2

p

2(y

0

)

2

�

2m

(17)

For 
on
reteness, 
onsider a parabola with given parameter values:

f(x) = 6x(1� x) (18)

The �xed points are x

0

= 0 and x

1

=

5

6

. At x

1

:

y

0

(x

1

) = �5 ; f

00

(x

1

) = �12 (19)

and the �

2m


oeÆ
ients in (17) are

A

m

=

1

5

(4m)!

m!(2m)!

�

12

p

2 � 50

�

2m

(20)

The value of the �rst few A

m

is:

A

1

= 0:06911999 A

2

= 0:13934592 A

3

= 0:52973745

A

4

= 2:97500552 A

5

= 22:1397531 A

6

= 205:315214

A

7

= 2280:75872 A

8

= 29525:7901 A

9

= 436509:280

(21)

At the other �xed point, we will get f

0

(x

0

) = 6 ! y

0

(x

0

) = 5, so everything is the

same.
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4.2. Keating speaketh

The idea you outline would appear to be the one employed by Bleistein and

Handelsman [?℄ - ex
ept that rather than mapping onto a quadrati
 fun
tion, they

map onto a linear one (in the 
ase of an isolated saddle). The di�eren
e is, of 
ourse,

trivial.

They do the isolated saddle 
ase this way in se
tion 7.2. The mapping is given

by 7.2.2 and the resulting integral with a Ja
obian and an exa
tly linear exponent is

the result (7.2.3).

In the 
ase of many saddles, the 
orresponding mapping is derived in se
tion 9.2.

The Chester, Friedman and Ursell [?℄ paper referen
ed at the end of that 
hapter,

together with other papers by Ursell should be relevant.

As I said, this mapping idea leads to what is usually 
alled an integral in the

Borel plane [?℄. There have been a lot of papers by C.J. Howls on this - espe
ially the

one [?℄ on multiple integrals might be useful to you.

Abstra
t of ref. [?℄: The method of steepest des
ents for single dimensional

Lapla
e-type integrals involving an asymptoti
 parameter k was extended by Berry

and Howls [3℄ to provide exa
t remainder terms for trun
ated asymptoti
 expansions

in terms of 
ontributions from 
ertain non-lo
al saddlepoints. This led to an

improved asymptoti
 expansion (hyperasymptoti
s) whi
h gave exponentially a

urate

numeri
al and analyti
 results, based on the topography of the saddle distribution in

the single 
omplex plane of the integrand. In this paper we generalize these results

to similar well-behaved multidimensional integrands with quadrati
 
riti
al points,

integrated over in�nite 
omplex domains. As previously pointed out the extra 
omplex

dimensions give rise to interesting problems and phenomena. First, the 
onventionally

de�ned surfa
es of steepest des
ent are no longer unique. Se
ond, the Stokes's

phenomenon (whereby 
ontributions from subdominant saddles enter the asymptoti


representation) is of 
odimension one. Third, we 
an 
ollapse the representation of the

integral onto a single 
omplex plane with bran
h 
uts at the images of 
riti
al points.

The new results here demonstrate that dimensionality only trivially a�e
ts the form

of the exa
t multidimensional remainder. Thus the growth of the late terms in the

expansion 
an be identi�ed, and a hyperasymptoti
 s
heme implemented. We show

by a purely algebrai
 method how to determine whi
h 
riti
al points 
ontribute to the

remainder and hen
e resolve the global 
onne
tion problem, Riemann sheet stru
ture

and homology asso
iated with the multidimensional topography of the integrand.

4.3. Words of the wise

Leo Kadano� suggests that we should 
he
k nonlinear s
aling �elds, perhaps in

Wegner, En
y
lopedia of Phase Transitions. D. Nelson [?℄ did this for his PhD thesis,

and was dsappointed that the method never 
aught on.

Viviane Baladi suggests 
he
king Milnor's Stony Brook le
ture notes

rational maps ! K�oning's linearization

results on domain of 
onvergen
e h

�1

(�h(x)). There might be only 2 global bran
hes

in the test model we 
onsider.

To Ezra Getzler http://athos.math.nwu.edu this is reminis
ent of the 
atening of

genus 0 manifolds in Dubrovin's work on geometry of 2d topologi
al �eld theories [?℄.

Predrag has been unable to read that opus magnum.
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5. Summary

Intuitively, the noise inherent in any realisti
 system washes out �ne details and makes


haoti
 averages more robust. Quantum me
hani
al h-bar resolution of phase spa
e

implies that in semi-
lassi
al approa
hes no orbits longer than the Heisenberg time

need be taken into a

ount. We explore these ideas in some detail by 
asting sto
hasti


dynami
s into path integral form and developing perturbative and nonperturbative

methods for evaluating su
h su
h integrals. In the weak noise 
ase the standard

perturbation theory is expansion in terms of Feynman diagrams. Now the surprise;

we 
an 
ompute the same 
orre
tions faster and to a higher order in perturbation

theory by integrating over the neighborhood of a given saddlepoint exa
tly by means

of a nonlinear 
hange of �eld variables. The new perturbative expansion appears more


ompa
t than the standard Feynman diagram perturbation theory; whether it is better

than traditional loop expansions for 
omputing �eld-theoreti
 saddlepoint expansions

remains to be seen, but for a simple system we study the result is a sto
hasti
 analog

of the Gutzwiller tra
e formula with the �h 
orre
tions so far 
omputed to �ve orders

higher than what has been attainable in the quantum-me
hani
al appli
ations.
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