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Abstrat. The asymptotis of weak noise orretions to the spetrum of the

evolution operator assoiated with a nonlinear stohasti ow with additive noise

is evaluated. The method works for arbitrary noise strength. The method also

yields estimates for the late terms in the asymptoti saddlepoint expansions.

z

1. Outline

(i) det(1 � zL) spetrum by diagonalization in polynomial basis around x = 0:5 or

similar, ompared to PD lattie alulation, or the small � perturbative results.

(a) for 0 < � < 1 Fokker-Plank kernel integrated (GP)

(ii) late terms in the asymptoti saddle expansion

(a) for parabola �xed point (repeats dominated by (f

00

)

r

term?)

(b) for the test Cantor set repeller?

() understand the signi�ane of the singulant [1℄

(iii) �nd rossover in the loal spetrum from the detrministi to the pure Fokker-

Plank noise eigenvalues?

(iv) �nd a �nite-dimensional representation of the noisy evolution kernel

(v) have perhaps the best beer on �sterbro

z �le alf.nbi.dk:predrag/artiles/asym/asym.tex
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2. Matrix representation of Perron-Frobenius operator

Here we take a di�erent approah and alulate the ontribution of a single periodi

orbits to the integrals by onstruting a matrix representation for the operator valid

globally.

As in physial appliations one studies smooth dynamial observables, we restrit

the spae that L ats on to smooth funtions. In pratie \real analyti" means that

all expansions are polynomial expansions.

The main point is that the spetral determinants are entire funtions in any

dimension, provided that

1. the evolution operator is multipliative along the ow,

2. the symboli dynamis is a �nite subshift,

3. all yle eigenvalues are hyperboli (suÆiently bounded away from 1),

4. the map (or the ow) is real analyti, ie. it has a pieewise analyti ontinuation

to a omplex extension of the phase spae.

Finally we note that for 1-d repellers a diagonalization of an expliit trunated

L

mn

matrix yields many more eigenvalues than the yle expansions [17, 13℄. The

reasons why one persists anyway in using the periodi orbit theory are partially

aestheti, and partially pragmati. Expliit L

mn

demands expliit hoie of a basis and

is thus non-invariant, in ontrast to yle expansions whih utilize only the invariant

information about the ow. In addition, we do not know how to onstrut L

mn

for a

realisti ow, suh as the 3-disk problem, while the periodi orbit formulas are general

and straightforward to apply. The diÆulty lies in the existene of a stable manifold,

in whih the invariant measure is smooth only below the level of the noise. It remains

to be seen whether a basis that assumes smoothness only in the unstable diretion,

and uses the periodi orbit overing for the stable diretion an work.

Why noise atually is supposed to be good or the real motivation:

In semi-lassial theories one has to inlude several periodi orbits in the

alualations. At �rst it seems that one has to use all periodi orbits, however, a ut-

o� is introdued in ref. [25℄ orresponding to the Heisenberg time. A similar feature

should be expeted in systems with noise for the following physial reasons: Noise

itself should wash out the �ner details of phase spae making longer orbits irrelevant

for the desription. Also noise will smear out a singular wave funtion representing

say a partile and thereby regularize the theory [8℄.

3. Asymptotia

Another way of obtaining these results is to reate a global matrix represention of the

evolution operator using the ideas of ref. [17, 13℄. Here one expands the operator in

a polynomial basis around a suitable point. Beause of poor onvergene one has to

use a large basis - muh larger than a typial loal basis for a given orbit. The virtue

of this latter approah is that it gives the non-perturbative result with whih we an

ompare. The drawbak of the method presented here is that we do not yet know how

to optimize the trunation of the polynomials used. In pratie, however, the method

onverges.
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3.1. Dettmannism I (Jan 26, '99)

With Gergely's more preise �

12

, I return to my original formula,

�

2n

= 0:0527

n!32

n

2n� 1

whih gives �

12

= 3:70382� 10

9

, ie about 30 parts per million over Gergely's result.

Predition:

�

14

= 7:02017� 10

11

:

3.2. Vattayismo I (Jan 29, '99)

I disussed with Andre some of the basis: (we skipped Berry-Howls) et.. The

reommended reading for tonight are refs. [2, 3, 4, 5℄. There is a ommon feature

in all this vast literature: in saddle point integrals of our kind the tail behaviour is

n!a

n

; a

n

+ 1=a

n

should form a line for large n.

Andre explained how to alulate the late terms in an expansion. He gave

quantum mehanial examples to illustrate it. He even made a �t to our numbers

based on the assumption that our expansion is not muh di�erent from a quantum

one. The result is

�

2

n = (n� 1)!32

n

(0:0269 + 0:00956=n+ :::) (1)

whih �tts well exept to order 12 (n = 6). So, I assume that order 12 is still wrong,

at least Gergely's order 12. I have found that order 12 is negative while the rest is

positive. This is wrong as you will see later. Andre explained me that assymptoti

expansions annot behave di�erently than

C�(n+ �)a

n

:

For example �(2n+ �) annot happen! So, the right way to present result is to

plot the ratio of onsequtive terms and see if it is linear and �t (n+ �)a.

I have a ontour integral representation of trL for the orretions. The trik is

that instead of a ontour integral you ompute this integral via saddle point method

suh that your large parameter is now the order of the expansion! OK. Then you �nd

that there is a single saddle in this ase. Interestingly, in our problems omplex or real

periodi orbits do not give saddle point ontributions to this (like it happens typially

in QM). The saddle of interest in our ase is the point where f

0

(x) = 1 ! We negleted

this saddle so far. It is a solution of the saddle point equation

d

dx

(x� f(x))

2

= 2(x� f(x))(1� f

0

(x)) = 0: (2)

Another thing is that the fatorial-like term in our expansion is due to the

fatorials in the moments of the Gaussian. Combining these things you end up with

the formula

C(n� 1=2)!

2

n

(x� f(x))

2n+1

(3)

where x is the point f

0

(x) = 1. It is very likely that this formula, alulated for trL

is basially valid for the leading eigenvalue. I still have to hek this in detail.

One thing is now lear: It is reasonable to expet that within a few months we

will be able to ontrol the late terms. The strategy now is:
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n trL

0

0 0.11111111

1 0.07315957

2 0.20196660

3 1.00936323

4 7.34673301

5 70.3826169

6 837.075709

Table 1. �

2

; � � � ; �

6

perturbative oeÆients for the �xed point 0.

(i) predit the behaviour of the late terms, tehnology is available

(ii) push the alulation of orretions until the terms beome late ones

(iii) summ up the late terms and append (add) this as a orretion after the polinomial

formed by known terms.

We are probably luky in this ase, sine the subleading stu� might be so muh

supressed that we an reonstrut the measured urve quite aurately. An indiation

of this is that the onvergene of our series is very rapid to the asymptoti form. Andre

sees suh a fast onvergene the �rst time. Usually tens or more terms are needed.

I learned a lot from Andre and he seems to be interested, although he �nds this

model ad-ho. Also, I had enormous amount of disussions with him on orretions

and polynomial basis and loal alulations sine 1996. I would put him on the list of

authors at an appropriate time. He would put a quality stamp on the next paper.

3.3. Vattayismo II (Jan 31, '99)

Following the explanations of Andre Voros I managed to derive a formula for the

asymptotis of the trae trL of the �xed points. Gergely produed for me the data

for this quantity.

The numbers are given in table 1. The formula I derived is

C

2

n

(x� f(x))

2n

�(n+ 1=2)

p

n+ 1=2

(4)

where x is the point where f

0

(x) = 1. C also an be determined, I just had no time

yet. When you evaluate this numerially you get for the exponential

2=(x� f(x))

2

= 2:35::: (5)

When I numerially �t the series of table 1 with the formula

b

n

�(n+ a)=

p

n+ a (6)

I get

a = 0:497675� 0:00320107(0:643203%)

b = 2:35514� 0:00191123(0:0811514%)

 = 0:0436761� 5:14877e� 05(0:117885%) (7)

So, the theory works perfetly. A similar result should ome out for the other �xpoint

of the map. It seems that Gergelys numbers for this other �xpoint are not OK. For
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example, he got a negative number for n = 6, whih an be exluded. Also the

numbers after n = 4 are not onvining, sine the ratio of onsequtive terms does not

onverge as it should. So, I suggest not to publish �

10

and �

12

yet. I hope to get a

formula for the eigenvalues very soon and write a note.

3.4. Vattayismo III (Feb 2, '99)

It seems that I get a "hyper trae formula" for the asymptotis.

The k-th �

2

orretion to trL

n

is a sum over noisy periodi orbits of length n

and has the form (only the k dependene is shown)

X

p

C

p

�(k + 1=2)(2=S

p

)

k

p

k + 1=2

(8)

where S

p

are the noise ations of the orbits. Noisy periodi orbits are the periodi

orbits of the 2D map

x

0

= f(x) + p

p

0

= p=f

0

(x) (9)

suh that there is at least one nonzero p

n

of the periodi orbit (x

n

; p

n

). The noise

ation is S

p

=

P

n

p

2

n

=

P

n

(x

n+1

� f(x

n

))

2

. (For n = 1 we just get bak the result I

posted earlier.) For ordinary periodi orbits p

n

= 0. These do not qualify.

For the global eigenvalues 32

k

means that we will �nd an orbit with ation

S

p

= 1=16.

We are really lose to something great! For the �rst few k we an ompute the

orretions based on normal periodi orbits and then terminate the sequane with this

new trae formula, the larger k is the formula gets more aurate.

4. Pallatables: matrix rep for arbitrary �, Nov 19, 1998

Let's investigate the onrete form of the following matrix:

L

l;k

=

�

�

l

�y

0l

�

�

�

�

e

�

y

0

�f(y)

2�

2

�

�

�

�

y

k

k!

�

(10)

First, let's the at with the operator on

y

k

k!

:

Z

dye

�

y

0

�f(y)

2�

2

y

k

k!

=

Z

dz

e

�

z

2�

2

k!

�

f

�1

(y

0

� z)

�

k

j

dz

dy

j

= �

�

y(z) = f

�1

(y

0

� z)

dz

dy

= �f

0

(y) = �f

0

(f

�1

(y

0

� z))

�

� =

Z

dz

e

�

z

2�

2

k!

�

f

�1

(y

0

� z)

�

k

jf

0

(f

�1

(y

0

� z))j

=

Z

dz

e

�

z

2�

2

k!

�

f

�1

(y

0

� z)

�

k

(f

�1

)

0

(y

0

� z)

=

Z

dz

e

�

z

2�

2

(k + 1)!

d

dy

0

h

�

f

�1

(y

0

� z)

�

k+1

i

(11)

So the matrix element an be written:

L

l;k

=

�

l+1

�y

0l+1

"

Z

dz

e

�

z

2�

2

(k + 1)!

�

f

�1

(y

0

� z)

�

k+1

#

�

�

�

�

�

y

0

=0

(12)
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4.1. Pallatables: matrix rep for parabola �xed point, Nov 17, 1998

The trae of the Perron-Frobenius operator at �xed point:

trL =

Z

dxÆ

�

(f(x)� x) =

Z

dx

1

X

m=0

a

m

�

m

Æ

(m)

(f(x)� x) (13)

an be evaluated using

Z

dxÆ

(n)

(y) =

Z

dy

1

jy

0

(x)j

Æ

(n)

=

X

x:y(x)=0

(�1)

n

d

n

dy

n

1

jy

0

(x)j

: (14)

In general [?℄:

(�1)

n

d

n

dy

n

1

jy

0

j

=

1

jy

0

j

X

fk

l

g

(2n� k

1

)!

(�y

0

)

2n�k

1

Y

l�2

f

(l)

k

l

(l!)

k

l

k

l

!

; (15)

where the sum runs over all sets fk

l

g satisfying l � 1; k

l

� 0;

P

k

l

= n and

P

lk

l

= 2n.

If f is a parabola, then f

000

and higher derivatives are zero, so only thoose terms ount

in the expression above, where k

2

6= 0; k

i

= 0; i > 2. This means, that we have to look

for the set satisfying k

1

+ k

2

= n and k

1

+2k

2

= 2n, that is k

2

= n; k

1

= 0. So in ase

of parabola:

(�1)

n

d

n

dy

n

1

jy

0

j

=

1

jy

0

j

(2n)!

(y

0

)

2n

(f

00

)

n

2

n

n!

=

1

jy

0

j

(2n)!

n!

�

f

00

2(y

0

)

2

�

n

(16)

Let us suppose that the noise is a Gaussian noise (??). The trae is then

trL =

1

jy

0

j

+

1

jy

0

j

1

X

m=1

(4m)!

m!(2m)!

�

�f

00

2

p

2(y

0

)

2

�

2m

(17)

For onreteness, onsider a parabola with given parameter values:

f(x) = 6x(1� x) (18)

The �xed points are x

0

= 0 and x

1

=

5

6

. At x

1

:

y

0

(x

1

) = �5 ; f

00

(x

1

) = �12 (19)

and the �

2m

oeÆients in (17) are

A

m

=

1

5

(4m)!

m!(2m)!

�

12

p

2 � 50

�

2m

(20)

The value of the �rst few A

m

is:

A

1

= 0:06911999 A

2

= 0:13934592 A

3

= 0:52973745

A

4

= 2:97500552 A

5

= 22:1397531 A

6

= 205:315214

A

7

= 2280:75872 A

8

= 29525:7901 A

9

= 436509:280

(21)

At the other �xed point, we will get f

0

(x

0

) = 6 ! y

0

(x

0

) = 5, so everything is the

same.
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4.2. Keating speaketh

The idea you outline would appear to be the one employed by Bleistein and

Handelsman [?℄ - exept that rather than mapping onto a quadrati funtion, they

map onto a linear one (in the ase of an isolated saddle). The di�erene is, of ourse,

trivial.

They do the isolated saddle ase this way in setion 7.2. The mapping is given

by 7.2.2 and the resulting integral with a Jaobian and an exatly linear exponent is

the result (7.2.3).

In the ase of many saddles, the orresponding mapping is derived in setion 9.2.

The Chester, Friedman and Ursell [?℄ paper referened at the end of that hapter,

together with other papers by Ursell should be relevant.

As I said, this mapping idea leads to what is usually alled an integral in the

Borel plane [?℄. There have been a lot of papers by C.J. Howls on this - espeially the

one [?℄ on multiple integrals might be useful to you.

Abstrat of ref. [?℄: The method of steepest desents for single dimensional

Laplae-type integrals involving an asymptoti parameter k was extended by Berry

and Howls [3℄ to provide exat remainder terms for trunated asymptoti expansions

in terms of ontributions from ertain non-loal saddlepoints. This led to an

improved asymptoti expansion (hyperasymptotis) whih gave exponentially aurate

numerial and analyti results, based on the topography of the saddle distribution in

the single omplex plane of the integrand. In this paper we generalize these results

to similar well-behaved multidimensional integrands with quadrati ritial points,

integrated over in�nite omplex domains. As previously pointed out the extra omplex

dimensions give rise to interesting problems and phenomena. First, the onventionally

de�ned surfaes of steepest desent are no longer unique. Seond, the Stokes's

phenomenon (whereby ontributions from subdominant saddles enter the asymptoti

representation) is of odimension one. Third, we an ollapse the representation of the

integral onto a single omplex plane with branh uts at the images of ritial points.

The new results here demonstrate that dimensionality only trivially a�ets the form

of the exat multidimensional remainder. Thus the growth of the late terms in the

expansion an be identi�ed, and a hyperasymptoti sheme implemented. We show

by a purely algebrai method how to determine whih ritial points ontribute to the

remainder and hene resolve the global onnetion problem, Riemann sheet struture

and homology assoiated with the multidimensional topography of the integrand.

4.3. Words of the wise

Leo Kadano� suggests that we should hek nonlinear saling �elds, perhaps in

Wegner, Enylopedia of Phase Transitions. D. Nelson [?℄ did this for his PhD thesis,

and was dsappointed that the method never aught on.

Viviane Baladi suggests heking Milnor's Stony Brook leture notes

rational maps ! K�oning's linearization

results on domain of onvergene h

�1

(�h(x)). There might be only 2 global branhes

in the test model we onsider.

To Ezra Getzler http://athos.math.nwu.edu this is reminisent of the atening of

genus 0 manifolds in Dubrovin's work on geometry of 2d topologial �eld theories [?℄.

Predrag has been unable to read that opus magnum.
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5. Summary

Intuitively, the noise inherent in any realisti system washes out �ne details and makes

haoti averages more robust. Quantum mehanial h-bar resolution of phase spae

implies that in semi-lassial approahes no orbits longer than the Heisenberg time

need be taken into aount. We explore these ideas in some detail by asting stohasti

dynamis into path integral form and developing perturbative and nonperturbative

methods for evaluating suh suh integrals. In the weak noise ase the standard

perturbation theory is expansion in terms of Feynman diagrams. Now the surprise;

we an ompute the same orretions faster and to a higher order in perturbation

theory by integrating over the neighborhood of a given saddlepoint exatly by means

of a nonlinear hange of �eld variables. The new perturbative expansion appears more

ompat than the standard Feynman diagram perturbation theory; whether it is better

than traditional loop expansions for omputing �eld-theoreti saddlepoint expansions

remains to be seen, but for a simple system we study the result is a stohasti analog

of the Gutzwiller trae formula with the �h orretions so far omputed to �ve orders

higher than what has been attainable in the quantum-mehanial appliations.
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