Spectra of stochastic evolution operators: Beyond

all orders

1. Outline

Predrag Cvitanovi¢f, C P Dettmanni, Gergely Palla§,
Niels Sgndergaardfand Gabor Vattay$§

t Northwestern University, Department of Physics & Astronomy
2145 Sheridan Road, Evanston, Illinois 60208 USA

1 Center for Chaos and Turbulence Studies, Niels Bohr Institute
Blegdamsvej 17, DK-2100 Copenhagen @

§ Dept. Solid State Physics, E6tvos University

Muzeum krt. 6-8, H-1088 Budapest

Abstract. The asymptotics of weak noise corrections to the spectrum of the
evolution operator associated with a nonlinear stochastic flow with additive noise
is evaluated. The method works for arbitrary noise strength. The method also
yields estimates for the late terms in the asymptotic saddlepoint expansions.

t

(i) det(1 — z£) spectrum by diagonalization in polynomial basis around z = 0.5 or

similar, compared to PD lattice calculation, or the small o perturbative results.
(a) for 0 < o < 1 Fokker-Planck kernel integrated (GP)
late terms in the asymptotic saddle expansion

(a) for parabola fixed point (repeats dominated by (f")" term?)
(b) for the test Cantor set repeller?
(c¢) understand the significance of the singulant [1]

find crossover in the local spectrum from the detrministic to the pure Fokker-
Planck noise eigenvalues?

find a finite-dimensional representation of the noisy evolution kernel
have perhaps the best beer on @sterbro
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2. Matrix representation of Perron-Frobenius operator

Here we take a different approach and calculate the contribution of a single periodic
orbits to the integrals by constructing a matrix representation for the operator valid
globally.

As in physical applications one studies smooth dynamical observables, we restrict
the space that £ acts on to smooth functions. In practice “real analytic” means that
all expansions are polynomial expansions.

The main point is that the spectral determinants are entire functions in any
dimension, provided that
1. the evolution operator is multiplicative along the flow,

2. the symbolic dynamics is a finite subshift,

3. all cycle eigenvalues are hyperbolic (sufficiently bounded away from 1),

4. the map (or the flow) is real analytic, ie. it has a piecewise analytic continuation
to a complex extension of the phase space.

Finally we note that for 1-d repellers a diagonalization of an explicit truncated
L,,, matrix yields many more eigenvalues than the cycle expansions [17, 13]. The
reasons why one persists anyway in using the periodic orbit theory are partially
aesthetic, and partially pragmatic. Explicit L,,,,, demands explicit choice of a basis and
is thus non-invariant, in contrast to cycle expansions which utilize only the invariant
information about the flow. In addition, we do not know how to construct L,,,, for a
realistic flow, such as the 3-disk problem, while the periodic orbit formulas are general
and straightforward to apply. The difficulty lies in the existence of a stable manifold,
in which the invariant measure is smooth only below the level of the noise. It remains
to be seen whether a basis that assumes smoothness only in the unstable direction,
and uses the periodic orbit covering for the stable direction can work.

Why noise actually is supposed to be good or the real motivation:

In semi-classical theories one has to include several periodic orbits in the
calcualations. At first it seems that one has to use all periodic orbits, however, a cut-
off is introduced in ref. [25] corresponding to the Heisenberg time. A similar feature
should be expected in systems with noise for the following physical reasons: Noise
itself should wash out the finer details of phase space making longer orbits irrelevant
for the description. Also noise will smear out a singular wave function representing
say a particle and thereby regularize the theory [8].

3. Asymptotia

Another way of obtaining these results is to create a global matrix represention of the
evolution operator using the ideas of ref. [17, 13]. Here one expands the operator in
a polynomial basis around a suitable point. Because of poor convergence one has to
use a large basis - much larger than a typical local basis for a given orbit. The virtue
of this latter approach is that it gives the non-perturbative result with which we can
compare. The drawback of the method presented here is that we do not yet know how
to optimize the truncation of the polynomials used. In practice, however, the method
converges.
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3.1. Dettmannism I (Jan 26, ’99)

With Gergely’s more precise v12, I return to my original formula,

n!32"

2n —1
which gives v1» = 3.70382 x 10, ie about 30 parts per million over Gergely’s result.
Prediction:

vap = 0.0527

vig = 7.02017 x 10*.

3.2. Vattayismo I (Jan 29, ’99)

I discussed with Andre some of the basics: (we skipped Berry-Howls) etc.. The
recommended reading for tonight are refs. [2, 3, 4, 5]. There is a common feature
in all this vast literature: in saddle point integrals of our kind the tail behaviour is

nla™, a, + 1/ay,

should form a line for large n.

Andre explained how to calculate the late terms in an expansion. He gave
quantum mechanical examples to illustrate it. He even made a fit to our numbers
based on the assumption that our expansion is not much different from a quantum
one. The result is

von = (n — 1)1327(0.0269 + 0.00956 /n. + ...) (1)

which fitts well except to order 12 (n = 6). So, I assume that order 12 is still wrong,
at least Gergely’s order 12. I have found that order 12 is negative while the rest is
positive. This is wrong as you will see later. Andre explained me that assymptotic
expansions cannot behave differently than

CT'(n + p)a™.

For example I'(2n + p) cannot happen! So, the right way to present result is to
plot the ratio of consequtive terms and see if it is linear and fit (n + p)a.

I have a contour integral representation of tr £ for the corrections. The trick is
that instead of a contour integral you compute this integral via saddle point method
such that your large parameter is now the order of the expansion! OK. Then you find
that there is a single saddle in this case. Interestingly, in our problems complex or real
periodic orbits do not give saddle point contributions to this (like it happens typically
in QM). The saddle of interest in our case is the point where f'(x) = 1! We neglected
this saddle so far. It is a solution of the saddle point equation

d ‘
@ = f@)* =2(z = f(@)(1 - f'(z)) = 0. (2)

Another thing is that the factorial-like term in our expansion is due to the
factorials in the moments of the Gaussian. Combining these things you end up with
the formula

2n

— 3
@ f@a ©)
where z is the point f'(z) = 1. It is very likely that this formula, calculated for tr £
is basically valid for the leading eigenvalue. I still have to check this in detail.

One thing is now clear: It is reasonable to expect that within a few months we
will be able to control the late terms. The strategy now is:

C(n—1/2)!
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tr Lo

0.11111111
0.07315957
0.20196660
1.00936323
7.34673301
70.3826169
837.075709

O Ul W N R OlS

Table 1. ¢2,---,05 perturbative coefficients for the fixed point 0.

(i) predict the behaviour of the late terms, technology is available
(ii) push the calculation of corrections until the terms become late ones

(iii) summ up the late terms and append (add) this as a correction after the polinomial
formed by known terms.

We are probably lucky in this case, since the subleading stuff might be so much
supressed that we can reconstruct the measured curve quite accurately. An indication
of this is that the convergence of our series is very rapid to the asymptotic form. Andre
sees such a fast convergence the first time. Usually tens or more terms are needed.

I learned a lot from Andre and he seems to be interested, although he finds this
model ad-hoc. Also, I had enormous amount of discussions with him on corrections
and polynomial basis and local calculations since 1996. I would put him on the list of
authors at an appropriate time. He would put a quality stamp on the next paper.

3.3. Vattayismo II (Jan 31, ’99)

Following the explanations of Andre Voros I managed to derive a formula for the
asymptotics of the trace tr £ of the fixed points. Gergely produced for me the data
for this quantity.

The numbers are given in table 1. The formula I derived is

2m I'(n+1/2)

@ J@P Jnri)2

where z is the point where f'(z) = 1. C also can be determined, I just had no time
yet. When you evaluate this numerically you get for the exponential

(4)

2/(z — f(z))? = 2.35... (5)
When I numerically fit the series of table 1 with the formula
cb"I'(n+a)/vVn+a (6)

I get
a = 0.497675 £ 0.00320107(0.643203%)
b = 2.35514 +0.00191123(0.0811514%)
¢ =0.0436761 £ 5.14877¢ — 05(0.117885%) (7)

So, the theory works perfectly. A similar result should come out for the other fixpoint
of the map. It seems that Gergelys numbers for this other fixpoint are not OK. For
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example, he got a negative number for n = 6, which can be excluded. Also the
numbers after n = 4 are not convincing, since the ratio of consequtive terms does not
converge as it should. So, I suggest not to publish vy and v12 yet. I hope to get a
formula for the eigenvalues very soon and write a note.

3.4. Vattayismo III (Feb 2, ’99)

It seems that I get a "hyper trace formula” for the asymptotics.
The k-th o2 correction to tr £” is a sum over noisy periodic orbits of length n
and has the form (only the k dependence is shown)

k+1/2)(2/5,)*
Z P m (8)

where S, are the noise actions of the orbits. Noisy periodic orbits are the periodic
orbits of the 2D map

¢’ =f(z) +p
P =p/f'(z) (9)
such that there is at least one nonzero p,, of the periodic orbit (z,,p,). The noise
actionis S, =Y, p2 =3, (xnt1 — f(zy))?. (For n =1 we just get back the result I
posted earlier.) For ordinary periodic orbits p, = 0. These do not qualify.
For the global eigenvalues 32% means that we will find an orbit with action
Sy =1/16.
We are really close to something great! For the first few k& we can compute the
corrections based on normal periodic orbits and then terminate the sequance with this
new trace formula, the larger k is the formula gets more accurate.

4. Pallatables: matrix rep for arbitrary o, Nov 19, 1998
Let’s investigate the concrete form of the following matrix:

5l _ yk
Ly = <W € F> (10)

k
First, let’s the act with the operator on y—,

—fy 20‘ - g k
/dye y%f()y /de v —2) = *

||

v —fy)
P

(y(z>=f—1(y'—z> %——fu f(f‘l(y’—Z))>

= [a e,:;’ N =) = [t 7 - ) )

y—Z

:/d (Z :”1)!dy [(ffl(y’—z))kﬂ]

So the matrix element can be written:

8”1 e 3T _ k
/dz k+1) i -2) H]

Lk ll+1

y'=0

y' —z)

(11)



Stochastic trace formulas 6

4.1. Pallatables: matriz rep for parabola fixed point, Nov 17, 1998

The trace of the Perron-Frobenius operator at fixed point:

tr L = /dméa(f(m) —z)= /dw > amo™6" (f(z) — ) (13)
m=0

can be evaluated using

n 1
/dm( ) (y) Z/dy|y( ; (Z dyn |y( o
In general [?]:
@t L 2n— k)l fON
( 1) dy” |yl| |Z/ | {kz:} 2n k1 ll_[z (l!)klkl!a (15)

where the sum runs over all sets {k; } satisfying! > 1,k > 0, k; =nand ) Ik, = 2n.
If f is a parabola, then f"" and higher derivatives are zero, so only thoose terms count
in the expression above, where ky # 0, k; = 0,7 > 2. This means, that we have to look
for the set satisfying k1 + k2 = n and ky + 2ks = 2n, that is k2 = n, k; = 0. So in case
of parabola:

n 1 (f11\n ! noqn

VT T T 27 1o

Let us suppose that the noise is a Gaussian noise (??). The trace is then
ofr 12m

L T S Z o |33 o
For concreteness, consider a parabola with given parameter values:

f(z) =62(1 — ) (18)
The fixed points are zp = 0 and x; = % At zq:

V@) =—-5,  f'&)=-12 (19)
and the o?™ coefficients in (17) are

2m
An = ér,f@) {fl 250} (20)

The value of the first few A,, is:

A; =0.06911999 A, = 0.13934592 Az = 0.52973745
Ay = 297500552 As; = 22.1397531 A¢ = 205.315214 (21)
A7 =2280.75872  Ag = 29525.7901 Ay = 436509.280

At the other fixed point, we will get f'(xo) = 6 — y'(xg) = 5, so everything is the
same.
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4.2. Keating speaketh

The idea you outline would appear to be the one employed by Bleistein and
Handelsman [?] - except that rather than mapping onto a quadratic function, they
map onto a linear one (in the case of an isolated saddle). The difference is, of course,
trivial.

They do the isolated saddle case this way in section 7.2. The mapping is given
by 7.2.2 and the resulting integral with a Jacobian and an exactly linear exponent is
the result (7.2.3).

In the case of many saddles, the corresponding mapping is derived in section 9.2.
The Chester, Friedman and Ursell [?] paper referenced at the end of that chapter,
together with other papers by Ursell should be relevant.

As T said, this mapping idea leads to what is usually called an integral in the
Borel plane [?]. There have been a lot of papers by C.J. Howls on this - especially the
one [?] on multiple integrals might be useful to you.

Abstract of ref. [?]: The method of steepest descents for single dimensional
Laplace-type integrals involving an asymptotic parameter k was extended by Berry
and Howls [3] to provide exact remainder terms for truncated asymptotic expansions
in terms of contributions from certain non-local saddlepoints. This led to an
improved asymptotic expansion (hyperasymptotics) which gave exponentially accurate
numerical and analytic results, based on the topography of the saddle distribution in
the single complex plane of the integrand. In this paper we generalize these results
to similar well-behaved multidimensional integrands with quadratic critical points,
integrated over infinite complex domains. As previously pointed out the extra complex
dimensions give rise to interesting problems and phenomena. First, the conventionally
defined surfaces of steepest descent are no longer unique. Second, the Stokes’s
phenomenon (whereby contributions from subdominant saddles enter the asymptotic
representation) is of codimension one. Third, we can collapse the representation of the
integral onto a single complex plane with branch cuts at the images of critical points.
The new results here demonstrate that dimensionality only trivially affects the form
of the exact multidimensional remainder. Thus the growth of the late terms in the
expansion can be identified, and a hyperasymptotic scheme implemented. We show
by a purely algebraic method how to determine which critical points contribute to the
remainder and hence resolve the global connection problem, Riemann sheet structure
and homology associated with the multidimensional topography of the integrand.

4.8. Words of the wise

Leo Kadanoff suggests that we should check nonlinear scaling fields, perhaps in
Wegner, Encyclopedia of Phase Transitions. D. Nelson [?] did this for his PhD thesis,
and was dsappointed that the method never caught on.

Viviane Baladi suggests checking Milnor’s Stony Brook lecture notes
rational maps — Koning’s linearization
results on domain of convergence h~*(Ah(z)). There might be only 2 global branches
in the test model we consider.

To Ezra Getzler http://athos.math.nwu.edu this is reminiscent of the flatening of
genus 0 manifolds in Dubrovin’s work on geometry of 2d topological field theories [?].
Predrag has been unable to read that opus magnum.
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5. Summary

Intuitively, the noise inherent in any realistic system washes out fine details and makes
chaotic averages more robust. Quantum mechanical h-bar resolution of phase space
implies that in semi-classical approaches no orbits longer than the Heisenberg time
need be taken into account. We explore these ideas in some detail by casting stochastic
dynamics into path integral form and developing perturbative and nonperturbative
methods for evaluating such such integrals. In the weak noise case the standard
perturbation theory is expansion in terms of Feynman diagrams. Now the surprise;
we can compute the same corrections faster and to a higher order in perturbation
theory by integrating over the neighborhood of a given saddlepoint exactly by means
of a nonlinear change of field variables. The new perturbative expansion appears more
compact than the standard Feynman diagram perturbation theory; whether it is better
than traditional loop expansions for computing field-theoretic saddlepoint expansions
remains to be seen, but for a simple system we study the result is a stochastic analog
of the Gutzwiller trace formula with the A corrections so far computed to five orders
higher than what has been attainable in the quantum-mechanical applications.
[1] R.B. Dingle Asymptotic Ezpansions: their Derivation and Interpretation (Academic
Press, London, 1973).
(??7) M.V. Berry and C.J. Howls, Proc. Roy. Soc. 422, 7-21 (1989)
(??7) M.V. Berry and C.J. Howls, Proc. Roy. Soc. 434, 657-675 (1991)
(??7) M.V. Berry and C.J. Howls, Proc. Roy. Soc. 443, 107-126 (1993)
(??7) M.V. Berry and C.J. Howls, Proc. Roy. Soc. 447, 527-555 (1994)

6] P. Gaspard and D. Alonso Ramirez, Phys. Rev. A 45, 8383 (1992).

7] P. Gaspard and D. Alonso Ramirez, Phys. Rev. A 47, R3468 (1993).

8] P. Gaspard, G. Nicolis, A. Provata and S. Tasaki, Phys. Rev. E 51, 74 (1995).

9] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry. (North Holland,

Amsterdam, 1981).

[10] A. Lasota and M. MacKey, Chaos, Fractals, and Noise; Stochastic Aspects of Dynamics
(Springer-Verlag, Berlin, 1994).

[11] D. Ruelle, Ergod. The. and Dynam. Sys. 2, 99 (1976).

[12] D. Ruelle, Statistical Mechanics, Thermodynamic Formalism (Addison-Wesley, Reading
MA, 1978).

[13] H.H. Rugh, “The Correlation Spectrum for Hyperbolic Analytic Maps”, Nonlinearity 5,
1237 (1992).

[14] P. Cvitanovi¢, P.E. Rosenqvist, H.-H. Rugh and G. Vattay, CHAOS 3, 619 (1993).
[15] F. Christiansen, S. Isola, G. Paladin and H.H. Rugh, J. Phys. A 23, L1301 (1990).
[16] F. Christiansen, G. Paladin and H.H. Rugh, Phys. Rev. Lett. 65, 2087 (1990).

[17] F. Christiansen, P. Cvitanovi¢ and H.H. Rugh, J. Phys. A 23, L713 (1990).

[18] P. Cvitanovié¢, ed., Periodic Orbit Theory - theme issue, CHAOS 2, 1 (1992).

[19] P. Cvitanovi¢, Phys. Rev. Lett. 61, 2729 (1988).

[20] D. Ruelle, Inventiones Math. 34, 231 (1976).

[21] D. Fried, Ann. Scient. Ec. Norm. Sup. 19, 491 (1986).

[22] R. Artuso, E. Aurell and P. Cvitanovié¢, Nonlinearity 3, 361 (1990).

[

23] M. Abramowitz and L.A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, (Dover, New York, 1964); Chapter 24., p. 823,
formula I. B.

24] L. Euler, Opera Omnia (Teubner, 1922).

25] M.V. Berry and J. P. Keating, J. Phys. A 23, 4839 (1990).

26] A. Grothendieck, “La théorie de Fredholm”, Bull. Soc. Math. France 84, 319 (1956).

27] P. Cvitanovi¢, N.J. Balmforth, G.R. Ierley, E.A. Spiegel and G. Vattay, “Periodic orbit
expansions for smooth flow fast dynamos”, Proc. of the “Noise in Astrophysics”



Stochastic trace formulas 9

workshop, Gainsville, Florida 1993, FIX

[28] A. Selberg, J. Ind. Math. Soc. 20, 47 (1956).

[29] P. Gaspard and S.A. Rice, J. Chem. Phys. 90, 2225 (1989); 90, 2242 (1989); 90, 2255
(1989).

[30] P. Cvitanovié¢, Physica D 51, 138 (1991).

[31] R. Bowen, FEquilibrium states and the ergodic theory of Anosov-diffeomorphisms,
Springer Lecture Notes in Math. 470 (1975).

[32] R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, Reading
MA, 1987).

[33] A. Wirzba, CHAOS 2, 77 (1992).

[34] S. Smale, Bull. Am. Math. Soc. 73, 747 (1967).

[35] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Phys. Rev.
A107, 1141 (1986).

[36] P. Cvitanovi¢ and B. Eckhardt, J. Phys. A 24, L237 (1991).

[37] P. Cvitanovi¢ and B. Eckhardt, Phys. Rev. Lett. 63, 823 (1989).

[38] T. Prellberg and J. Slawny, J. Stat. Phys. 66, 503 (1992).

[39] Ya.G. Sinai, Russ. Math. Surveys 166, 21 (1972).

[40] M.C. Gutzwiller, J. Phys. Chem. 92, 3154 (1984).

[41] see for ex. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I
(Springer, Berlin 1985); H.P. McKean, Comm. Pure & Appl. Math., 25, 225 (1972);
27, 134 (1974).

[42] N.E. Hurt, “Zeta Functions and Periodic Orbit Theory: A Review”, Results in
Mathematics 28, 55 (Birkh&auser, Basel 1993).

[43] V. Baladi, “Dynamical Zeta Functions”, in Real and Complez Dynamical Systems, B.
Branner, ed. (Kluwer, Dordrecht 1993).

[44] D. Ruelle, J. Stat. Phys. 44, 281 (1986).

[45] D. Ruelle, J. Diff. Geo. 25, 99 (1987).

[46] D. Ruelle, J. Diff. Geo. 25, 117 (1987).

[47] M. Pollicott, Invent. Math. 85, 147 (1986).

[48] D. Ruelle, Commun. Math. Phys. 125, 239(1989).

[49] D. H. Mayer, Continued fractions and related transformations, in Ergodic Theory,
Symbolic Dynamics and Hyperbolic Spaces. T. Bedford, M. Keane, C. Series (Eds.).
Oxford University Press, Oxford, 1991. periodic orbits in quantum chaos:

[50] A. Voros, J. Phys. A 21, 685 (1988).

[51] H. Poincaré. Les méthodes nouvelles de la méchanique céleste. 1892.

[62] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems.
Cambridge University Press, Cambridge, 1995.

[563] C. L. Siegel. Iteration of analytic functions. Ann. Math., 43:607-612, 1942.

[564] J. Moser. A rapidly converging iteration method and nonlinear partial differential
equations. Ann. Scuola Norm. Super. Pisa, 20:265-315, 1966.

[65] J. Moser. Ann. Scuola Norm. Super. Pisa, 20:499-535, 1966.

[56] S. Sternberg. Amer. J. Math., 79:809, 1957.

[67] S. Sternberg. Amer. J. Math., 80:623, 1958.

[58] S. Sternberg. Amer. J. Math., 81:578, 1959.

[59] K.-T. Chen. Equivalence and decomposition of vector fields about an elementary critical
point. Amer. J. Math., 85:693-722, 1963.

[60] G.R. Belitskii. Equivalnce and normal forms of germs of smooth mappings. Russian
Math. Surveys, 31:107-177, 1978.

[61] A.D. Brjuno. The analytic form of differential equations. Trans. Moscow Math. Soc.,
25:131-288, 1971.

[62] A.D. Brjuno. The analytic form of differential equations. Trans. Moscow Math. Soc.,
26:199-238, 1972.

[63] C. Van den Broeck. Renormalization of first-passage times for random walks on



Stochastic trace formulas 10

deterministic fractals. Physical Review A, 40:7334, 1989.
[64] H.A. Lauwerier. In V. Holden, editor, Chaos, page 39. Princeton University Press, 1986.
[65] I. Gumowski and C. Mira. Recurrances and Discrete Dynamical Systems. Springer-
Verlag, Berlin, 1980.



