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A particularly simple model belonging to a wide class of coupled maps which obey a local
conservation law is studied. The phase structure of the system and the types of the phase transitions
are determined. It is argued that the structure of the phase diagram is robust with respect to mild
violations of the conservation law. Critical exponents possibly determining a new universality class
are calculated for a set of independent order parameters. Numerical evidence is produced suggesting
that the singularity in the density of Lyapunov exponents atl50 is a reflection of the singularity
in the density of Fourier modes~a ‘‘Van Hove’’ singularity! and disappears if the conservation law
is broken. Applicability of the Lyapunov dimension to the description of spatiotemporal chaos in a
system with a conservation law is discussed. ©1997 American Institute of Physics.
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The essential features of an extended non-equilibrium
system can be effectively modeled using a coupled ma
lattice. Such a model includes particular couplings be-
tween lattice sites, and can provide a straightforward
method for simulating extended systems with highly non-
linear local interactions. The question addressed in the
current study concerns how the behavior of systems sub
ject to certain conservation laws „conserving systems…
may differ from non-conserving systems, unconstrained
by such laws. The consequence of violating a conserva
tion law is also considered. To this end we have con
ducted a detailed study of a simple model for both con-
serving and non-conserving non-equilibrium systems.
The observed differences could help in the identification
of hidden conservation laws, and mechanisms for their
violation, for real physical, chemical and biological sys-
tems.

I. INTRODUCTION

Coupled map lattices~CML! with an additive conserved
quantity became a subject of intensive research recently1–3

On the one hand such CML’s are often obtained as phen
enological models representing the dynamics of a large n
ber of interacting macroscopic structures. On the other h
they are a natural result of finite-difference approximatio
of continuous nonlinear partial differential equations such
the Kuramoto–Sivashinky equation,4 or a phenomenologica
Cahn–Hilliard equation5 describing the nonlinear dynamic
of several systems with conserved-order-parameter.

Models of this class are expected to represent sev
typical non-equilibrium physical phenomena. For instan
surface waves,6 where the average depth of the fluid in th
container is conserved, electrohydrodynamic instabilities
nematics with insulating plates,7 where the total charge i
conserved, disturbances in the atmosphere and ocean
tems, where the total~depth integrated! heat is conserved
and even some types of hard turbulence.8 As such they are
significant as tools for studying the complex spatiotempo
CHAOS 7 (2), 1997 1054-1500/97/7(2)/311/20/$10.0
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behavior of spatially extended non-linear systems, espec
in the strongly chaotic regime, where the analytical metho
designed for weak nonlinearities become ineffective.

For coupled map systems with an additive conserv
quantity several major points are still awaiting clarificatio
First of all, what is the effect of the conservation law on t
structure of the phase diagram and the character of the p
transitions? What is the connection between the conserva
law and singularities observed in the density of Lyapun
exponents1,9,10 and what is the origin and significance o
these singularities? Another important issue is to determ
which parameters best describe the dynamics of an exten
system and what their limitations are. In particular, it is u
clear whether the Lyapunov spectrum provides any exclus
information about the chaotic dynamics that cannot be
tained by other methods. And finally, we would like to kno
whether the reduction of the system dynamics to symb
form preserves the main characteristics of the chaotic
namics and can provide us with the complete description
the latter.

The model chosen should be relatively simple yet rep
sent most of the typical features under consideration. M
important, it should have a non-trivial phase diagram. W
this in mind we pick the one-dimensional collection ofL
diffusively coupled chaotic maps:

ui
n115ui

n1~ f ~ui21
n !22 f ~ui

n!1 f ~ui11
n !!, ~1!

with periodic boundary conditions imposed. The local m
was chosen to be

f ~x!5ax1bz~12z!, z5frac~x!. ~2!

This CML can also be regarded as a finite differen
approximation of the differential equation continuous in bo
space and time,

] tu~x,t !5]x
2f ~u~x,t !!. ~3!

A differential equation of this form represents the compe
tion between two opposing tendencies: generation of cha
3110 © 1997 American Institute of Physics
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312 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
perturbations by the non-linear part off (x) and dissipation
of these perturbations by the diffusive coupling introduc
by the second spatial derivative.

The model clearly possesses the conservation law:

u5
1

L (
i51

L

ui
n5const, ~4!

so that aside from the two parameters of the local mapa and
b we have an additional control parameter—the addit
conserved quantityu, which is defined by the initial condi
tion and is of critical importance to the behavior of the sy
tem.

We are primarily interested in the dynamics in the ‘‘the
modynamic limit’’ L→`, although the numerics is obvi
ously restricted to finite systems.

The outline of this paper is as follows. In section II w
study the phase diagram of the coupled map model. In
tion III we introduce the symbolic~reduced! description of
the system dynamics. In section IV we discuss the quan
tive description of the reduced dynamics. In section V
study phase transitions in our model and determine t
types. In particular, we study the effect of the conservat
law on the type of the transition and on the values of criti
exponents. In section VI we discuss the applicability of t
Lyapunov dimension to the description of the dynamics
the system. In section VII we present numerical data sugg
ing the reason for the existence of the singularity in the sp
trum of Lyapunov exponents. In section VIII we demonstra
the effect of violations of the conservation law on the syst
dynamics. The paper ends with a summary and discussio
section IX.

II. PHASE DIAGRAM

Despite its simple form, this model has a very rich stru
ture. Numerical simulations show that depending on the v
ues of the control parameters it can be strongly or mil
chaotic, show spatiotemporal intermittency~STI!, give rise
to pattern formation or simply decay into the spatially u
form stable state, or~for L – even! a 2-cycle in both space
and time. Both asymptotically regular~non-chaotic! states
can be described by a single equation:

uj
n5u1~21! j1nA. ~5!

In order to gain some insight into the phase diagram
analytically determine the boundaries of the stability regio
of the two non-chaotic asymptotic states of the system. L
ear stability analysis of the spatially uniform state giv
Lyapunov exponents~equivalent to the growth rates! in the
form

ln5 lnU124~a1b22bu!sin2S pn

L D U. ~6!

From this one can conclude that the region of linear stab
of the uniform phase is given by

a1b

2b
2

1

4b
,u,

a1b

2b
. ~7!
CHAOS, Vol. 7,
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Note that at the upper boundary all exponents correspon
to all Fourier modesk5 2pn/L become real and positive
whereas at the lower boundary thek5p mode goes unstable
to a period 2 oscillation.

Stability analysis of the square of the map~1! gives the
boundaries of the linear stability region of the 2-cycle st
written in a slightly different form:

ui
n5H u1 , if i1n is even,

u2 , if i1n is odd.
~8!

The dynamics is invariant under the transformati
u→u61. As a consequence it turns out that there are t
types of 2-cycles possible. One~type-I! with

@u2#5@u1#21 ~9!

(@•# denotes the integer part! requires

u65uS 16
2b

4bu1122aD , ~10!

and has a stability region bounded by the surfaces given
the following two equations:

~122a12b14bu2!~122a22b14bu1!521 ~11!

and

u5
a

2b
. ~12!

At the upper boundary~12! the k5p mode becomes grow
ing, while at the lower boundary~11! a Hopf bifurcation of
the uku5p/2 modes occurs. This is quite fortunate, since o
can obtain the analytic expressions for the phase bounda
for a system of arbitrary sizeL from the analysis of a system
with L54.

The other~type-II! 2-cycle is such that

u21u1

2
5u and @u2#5@u1#, ~13!

and, for the local mapf (x) given by eq.~2!, it can only exist
at the stability boundary of the uniform state given by

u5
a1b

2b
2

1

4b
, ~14!

but can have an arbitrary amplitudeA5(u12u2)/2, subject
only to the condition~13!.

Figure 1 presents two cross sections of the param
space. We will denote the region where the uniform st
~1-cycle! is linearly stable as the phase L1. Similarly, th
phase L2 will stand for the linear stability region of th
2-cycle state. As we are going to see later, the 2-cycle sta
not the only possible asymptotic state in this phase, so it
be useful to introduce the additional subdivision of this pha
into subphases for a more detailed analysis.

The attractors of the phases T1 and T2 are chaotic.
two phases are not essentially different. One can easily fin
continuous trajectory in the parameter space that would
arbitrary points in phase T1 with those in phase T2 witho
intersecting any phase boundary. Although the dynamics
No. 2, 1997
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313R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
the system is somewhat different in the two phases for the
of parameters used, this distinction is introduced mostly
convenience.

An important property of the system is that despite
large number of degrees of freedom the type of the attra
~and therefore, the type of behavior, if one excludes lo
transients! seems to be uniquely determined by the values
control parametersa, b and u and is independent of th
details of the initial state. If there exists a single attract
then the basin of attraction is~almost! all configuration
space. In this case averages over the attractor can be
mated as the time average from a single initial condition, a
we can call the system ergodic.~We assume that, at leas
with respect to the numerical computation, there exist
‘‘physical measure’’ such as discussed by Eckmann

FIG. 1. Cross-sections of the phase diagram in a three-dimensional pa
eter space~a! u vs a at b51.3; ~b! u vs b at a50.4. The solid line corre-
sponds to a continuous phase transition. The dashed and the dotted
denote the phase boundaries where discontinuous phase transitions be
chaotic and non-chaotic states occur.
CHAOS, Vol. 7,
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Ruell11 that eliminates any ambiguity in the choice of inva
ant measures on the attractor.!

Indeed, numerical data suggest that the attractor
unique in most of the parameter space. However it is
always the case: close to the boundary L1–T1 a frozen
tern may form and the details of a pattern do depend on
initial conditions. So, on the timescale used in our calcu
tions ~typically of order 1 million iterations! the system did
not appear ergodic. Of course, that does not mean that
system could not become ergodic on a yet larger timesc

Another exception is the regions inside the order
phases L1 and L2, where two attractors, chaotic and n
chaotic, can coexist. We will later discuss this situation
more detail.

One of the objectives of this paper is to study the eff
of the conservation law on the dynamics of the extend
chaotic system. We therefore would like to follow th
changes in the parameters characterizing the dynamics
function of the conserved quantityu. In further work we will
fix the values of the other two parameters ata50.4,
b51.3, which~as seen from the phase diagram, fig. 1! will
allow us to study the regimes of interest~various chaotic as
well as periodic states!.

Looking at the phase diagram, one can expect that
model should experience at least four bifurcations or ph
transitions asu is varied in the interval 0,u,1. ~Since we
are interested in diverging correlation lengths near the tr
sitions between different states in theL→` limit, and the
consequent possibility of universal exponents, we will u
the term ‘‘phase transitions’’ rather than ‘‘bifurcations.’!
Equations ~11! and ~12! give us ua'0.0520 and
ub5ud20.5'0.1538 as the boundaries of the 2-cycle stab
ity region. According to eq.~7! the uniform state loses its
stability atuc'0.4615 andud'0.6538.

Phase transitions from ordered to chaotic states are c
mon occurrences in coupled map lattices.12 They may be
continuous or discontinuous. For continuous transitions
might expect the transitions to fall into various universal
classes, characterized by scaling exponents for various d
nostics of the chaos near the transition. In this case the t
sitions in CML’s may be representative of transitions to sp
tiotemporal chaos in more general extended non-equilibr
systems. Although the qualitative features determining
universality classes are not understood one expects that
metries, such as the Ising symmetry studied by Miller a
Huse,13 and conservation laws, rather than the detailed pr
erties of the local maps, will be important.

In particular, it has been suggested14 that under certain
very general conditions~e.g., in systems with a unique ab
sorbing state! the transition should fall into the universalit
class of directed percolation, although some counter
amples to this statement are known. It is nevertheless in
esting to check whether any of the phase transitions in
model belong to the universality class of directed perco
tion, since, as we are going to see below, the absorbing s
in our model is in fact unique for any choice of contr
parameters.

m-

nes
een
No. 2, 1997

to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/chaos/chocr.jsp



te
w
-
ce
m
d
na
w
v
re

s
u-

ta

r a

ith

-

is

ct
en
ng

ee
e
li
in
in
es
th

l.
o
o
f

ic
ed
t

a
no
he
ms
a
tic
ave
ed
ov-
th
r of
ally
or

-
lly
mi-
tur-
pe-I
ree
are
nar
the

se

b-

ally
at-
the
ter-
uite

f the

cor-
tates

314 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
III. REDUCED DYNAMICS

In order to understand the spatial dynamics of the sys
better and to see the finer details of the phase diagram
will ~following Kaneko15! reduce the description of the dy
namics to a finite number of states: in terms of this redu
dynamics each site of the lattice can be marked either ‘‘la
nar’’ or ‘‘turbulent’’ thus making up a set of laminar an
turbulent domains. Then one would naively expect a lami
domain to be a region of the lattice with a relatively slo
chaotic dynamics~no large, if any, positive local Lyapuno
exponents16!; and a turbulent domain to be a region whe
the chaotic dynamics is fast~with at least a few large positive
local Lyapunov exponents!. Positive Lyapunov exponent
will inevitably make the turbulent domains spatially irreg
lar, while laminar domains tend to be spatially regular.

We will not put the terms ‘‘laminar’’ and ‘‘turbulent’’ in
quotes below, nevertheless one should clearly unders
that these are just a convenient notation and thus are
stricted in meaning.

We need a simple criterion that will determine whethe
given site belongs to a turbulent or laminar domain~we will
only consider as laminar states those that are close to e
uniform or 2-cycle configurations!. The simple way to dis-
tinguish between~uniform! laminar and turbulent sites nu
merically would be to call a sitej laminar on time stepn if

uuj21
n 2uj

nu,e and uuj
n2uj11

n u,e, ~15!

and turbulent otherwise. The problem with this definition
that any 2-cycle with amplitude,

Aj
n5

uuj21
n 2uj

nu
2

.e, ~16!

would be considered turbulent, which is clearly incorre
Therefore, the definition of a laminar domain has to be g
eralized to include a zig–zag pattern with a slowly varyi
envelope of arbitrary amplitude:

uAj
n2Aj11

n u
uAj

n1Aj11
n u

,e. ~17!

In this particular model we sete;0.01.
Based on this reduction one can distinguish betw

various types of dynamics in the system. Pictures repres
ing the spatiotemporal evolution of the system in symbo
form are so characteristic that one can easily determ
which part of phase diagram the system is in just by look
at the patterns. We will examine several typical pictur
highlighting the most interesting phenomena observed in
model.

The behavior of our CML in the phase L2 is non-trivia
We already know that inside the phase there is a stable
dered state. Our numerical data imply however that this
dered 2-cycle state is stable in the non-linear sense only
values of u satisfyingua,up,u,un,ub ~figure 2!. As we
are going to see later, it is quite hard to determine the crit
valuesup andun exactly, but they seem to approach the fix
valuesup'0.063 andun'0.082 in the thermodynamic limi
L→`.
CHAOS, Vol. 7,
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For up,u,un the ordered state is reached through
chaotic transient whose lifetime is usually very small,
matter what initial condition is chosen, and thus t
asymptotic behavior dominates. For relatively small syste
(L&400) this results in a fast decay of any initial state into
limit 2-cycle. For larger systems the quiescent asympto
state may be completely regular as well, but it may also h
a few localized turbulent defects moving with unit spe
through the homogeneous 2-cycle background. Defects m
ing in opposite directions eventually die out, colliding wi
each other. Similar properties were observed in a numbe
one- and two-dimensional models featuring spatiotempor
intermittent dynamics~see Ref. 17 and references therein f
example!.

For ua,u,up as well as forun,u,ub the ordered
state is only conditionally stable~stable to small perturba
tions! and most initial conditions result in a spatiotempora
chaotic asymptotic state consisting of a combination of la
nar and turbulent domains, with the laminar domains fea
ing exactly the same structure as the ordered state: the ty
2-cycle. Therefore the phase L2 can be subdivided into th
sub-phases according to whether any turbulent domains
present in the asymptotic state together with the lami
background whose structure is the same throughout
phase L2.

Figure 2 shows schematically the~time averaged! frac-
tion of the lattice occupied by turbulent domains in the pha
L2 as a function of parameteru. In the sub-phaseL2l
(up,u,un) the asymptotic state is laminar. In the su
phases L2p (ua,u,up) and L2n (un,u,ub) the
asymptotic state can be either laminar or spatiotempor
chaotic. It is interesting to note that the characteristic p
terns produced by the turbulent domains are different in
two sub-phases featuring a persistent spatiotemporally in
mittent state. As a result one might expect to see two q
different phase transitions atu5up andu5un .

FIG. 2. One-dimensional cross-section of the phase diagram. Measure o
set of turbulent domains,r t , is plotted schematically~actual numeric results
are presented in fig. 9! as a function of parameteru. Solid lines correspond
to the values for the linearly stable asymptotic states and dashed lines
respond to the unstable asymptotic states. Two different linearly stable s
coexist in the sub-phasesL2p ,L2n ,L1 f . A locked chaotic state always
forms inT1l and for some initial states inL1 f as well.
No. 2, 1997
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FIG. 3. Symbolic representation of the system dynamics close to the phase transition points: turbulent sites are marked black and laminar sites a~a!
‘‘Percolating’’ state atu50.06; ~b! ‘‘nuclear’’ state atu50.09; ~c! defect dominated state atu50.46; ~d! frozen pattern atu50.66. Lattice size is 256.
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A pattern typical for the sub-phaseL2p is presented on
fig. 3~a!. This state is very similar to some of the spatiote
porally intermittent states of a~1-dimensional! model studied
by Chate and Manneville.19 The major difference is that in
our model turbulent domains typically have a larger si
Since the absorbing~laminar! state is an ordered one and
unique, we might expect a phase transition atup to belong to
the universality class of directed percolation.18

In fact, this kind of STI state is not specific to discre
extended systems. A very similar state can be observe
some continuous models as well, for instance,20 in a damped
Kuramoto–Sivashinsky equation:

] tu~x,t !52hu2]x
2u2]x

4u2u]xu, ~18!

with h'0.075.
Figure 3~b! presents another type of spatiotemporally

termittent state that can be observed in the phase L2
distinguishing feature is that it is composed of a set of v
CHAOS, Vol. 7,
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tually immobile turbulent nuclei ‘‘mediated’’ by creation an
absorption of non-linear waves, propagating trough the la
nar background with unit velocity. This type of ‘‘nuclear
STI state is characteristic for the sub-phaseL2n .

The phase L1 also features an internal structure~see fig.
2!. For uc,u,uf ~sub-phaseL1l) any initial configuration
decays quickly into a uniform stable state. In other wor
the uniform state is non-linearly stable. Foruf,u,ud ~sub-
phaseL1 f) the uniform state is only conditionally stable an
large deviations from it result in a spatiotemporally chao
asymptotic state. The transition point separating the two s
phases is estimated to beuf'0.53 in the thermodynamic
limit.

Figure 3~d! represents a frozen pattern, characteristic
the chaotic asymptotic state of the system in the sub-ph
L1 f and in the phase T1 close to the boundary with L1~we
will denote this regionT1l). It is probably more appropriate
to call this type of dynamics locked chaos: the chaotic st
No. 2, 1997
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316 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
is almost stationary in terms of reduced dynamics, w
chaos localized in turbulent domains. As was briefly me
tioned in section II, the dimensions and locations of the t
bulent domains depend on the details of the initial state
the system. The laminar state in this sub-phase is unifor

And finally, fig. 3~c! gives the reduced dynamics repr
sentation of critical behavior displayed by the CML in th
chaotic phase T2 close to the boundary with L1. Here
encounter yet another example of a spatiotemporally in
mittent state observed in our model. The laminar state
again a 2-cycle~more specifically the type-II 2-cycle! and it
is also absorbing, i.e., a new turbulent domain~we will call
these defects because of their small size! can never originate
inside a laminar domain, it can only be spawned by ot
defect~s!. However a defect can be consumed by a lami
domain, or alternatively it can be destroyed in a collisi
with another defect.

The most prominent feature of this picture is ‘‘spontan
ous’’ creation and annihilation of turbulent pulses~defects!
moving in different directions with different~but constant!
velocities. Therefore we may alternatively regard these
fects as traveling waves. Naively one would expect that
condition j@1, wherej is the correlation length, is neces
sary and might also be sufficient for the formation of a nu
ber of traveling waves. Numerical results for our model su
port this assumption~in disagreement with the stronge
restriction,21 according to which the correlation lengthj
should be comparable to the size of the systemL).

Nevertheless, since in the strongly chaotic regime
correlation length is of order one lattice spacing, the con
tion j@1 is usually only satisfied close to the hypersurfac
in the parameter space on which the correlation length
verges, i.e., where a continuous phase transition occurs.
is clearly the case of fig. 3~c!: we have a continuous phas
transition atu5uc'0.4615.

Deeper in the chaotic phases T1 and T2, away from
phase boundaries, strongly chaotic behavior could be
served. Here almost all sites on the lattice exhibit turbul
behavior, and only occasionally a laminar domain of a v
small size is created and then quickly consumed by
neighboring turbulent sites. We would call this type of d
namics strong chaos in contrast to the mild chaos, where
chaotic dynamics is localized to turbulent domains, occu
ing only a part of the lattice, while the rest of it is in th
laminar state.

IV. DOMAIN LENGTHS

A quantitative description of the reduced dynamics
provided by the probability distribution functionsPt( l ) and
Pl( l ) giving the probability for a turbulent~laminar! domain
to have lengthl . In order to calculate these functions nume
cally we used a single random initial condition and let t
system evolve, counting how many times a laminar~turbu-
lent! domain of a given size formed. The resulting distrib
tions did not depend on a particular choice of the init
CHAOS, Vol. 7,
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condition for any given set of control parameters correspo
ing to ergodic dynamics, i.e., everywhere except the s
phaseL1 f .

Our calculations show that in the chaotic state~away
from phase boundaries! bothPt( l ) andPl( l ) decay exponen-
tially. Even more important, typical lengthscales appear to
almost independent of the value of the conserved quan
u, being l l'1 for laminar andl t;103 for turbulent regions.
This is consistent with the point of view that most of th
system is in a turbulent state and the probability of enco
tering a laminar region at any particular location is ve
small ~but finite and independent of the system size! and
decreases rapidly with increasing domain length, while th
is no spatial structures defining alternative lengthscales.

The behavior of length distribution functions might b
expected to change substantially as the system gets clo
the phase transition points. For example, if the transition
continuous the correlation length may grow and the criti
effects might introduce alternative lengthscales that wo
modify the form of the distribution functions.

We first examine the ‘‘percolating’’ STI state characte
istic of the sub-phaseL2p . Figure 4~a! shows that both
Pt( l ) andPl( l ) decay exponentially for largel . This is com-
patible with the assumption that the phase transition
u5up might in fact belong to the universality class of d
rected percolation.18 It is interesting to note though, thatPl

has two branches, one corresponding to even, the othe
odd size of a domain. About the only useful information th
one can extract from this data is typical lengthscales of la
nar and turbulent domains, which, foru50.06, appear to be
tens of lattice spacings for both.

In the previous section we saw that the STI states
served insideL2p andL2n are considerably different. As a
result fig. 4~b!, which corresponds to the ‘‘nuclear’’ state
differs from fig. 4~a! substantially: thoughPt( l ) still decays
exponentially, Pl( l ) does not, but has another peak
l s'200. This peak is not a finite size effect~which can be
shown using a larger system! and indicates the presence
an internal spatial structure with characteristic lengthl s
~typical separation between the ‘‘nuclei’’! in the STI state.
The typical width of the ‘‘nuclei’’ is, in turn, determined by
Pt( l ).

Numerical data for a larger system (L54096) suggest
~in contrast with the results obtained by Chate a
Manneville19! a crossover type of behavior for the distrib
tion of laminar domain lengths away from the onset of S

Pl~ l !;H l a,a,0, for 1! l! l s ,

exp~2 l / l s!, for l@ l s .
~19!

As a result, if the characteristic lengthl s→` asu→un
1 we

should expect a pure power law decay ofPl( l ) at u5un .
Another interesting phenomenon can be pointed ou

fig. 4~c!. Both Pl( l ) andPt( l ) have two branches, one co
responding to even, the other to odd length of a domain.
behavior of these branches is quite peculiar, they cros
some crossover lengthl cr'36:
No. 2, 1997
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317R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
FIG. 4. Domain length probability distribution„1—laminar Pl( l ), d—turbulent Pt( l )… in ~a! ‘‘percolating’’ state atu50.06, ~b! ‘‘nuclear’’ state at
u50.09, ~c! defect dominated state atu50.46, ~d! frozen pattern atu50.66. Lattice size is 256.
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even~ l !.Pl

odd~ l !, l, l cr ; ~20!

Pl
even~ l !,Pl

odd~ l !, l. l cr . ~21!

The difference between the branches is larger forL-even and
smaller forL-odd. Similar relations hold forPt( l ), though
the difference between the branches is less pronounced
in the case ofPl .

Close to the boundary T2–L1 a typical state@fig. 3~c!# is
composed of a collection of laminar domains separated
small turbulent defects. As we are going to see later, mos
the turbulent domains tend to have a fixed lengthl t56, in-
dependent of the distance~in parameter space! to the transi-
tion point.

All defects move with a constant velocity, but while th
majority of defects is moving with the maximal spee
v561 the rest have a smaller speeduvu<1. Therefore we
CHAOS, Vol. 7,
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have a considerable probability of encountering a lami
domain bounded by a pair of defects which move with eq
and opposite speeds. If at some particular timen the length
of such a laminar domain was even~odd!, it will remain even
~odd! for as long as these defects exist since the length
increase~decrease! by 2 at each time step.

It is reasonable to assume that the details of the ‘‘def
interaction’’ favor the creation of domains with length of
given parity, say even over odd. As a result, one will see t
the probability of finding a laminar domain of small an
even sizel is higher than the probability of finding a lamina
domain with comparable odd sizel21 ~or l11), thus split-
ting the functionPl( l ) into two branches.

Since chaotic fluctuations tend to destroy the determ
istic predictions like the one we just discussed, we can
make any rigorous conclusions about the dynamics of lar
laminar domains. The numerical data suggests that the c
No. 2, 1997
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318 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
acteristic lengthscales determining the decay rates of the
branches are different, so they cross at some crossover le
l cr determined by the average distances between the de
moving with different speeds.

In the case of a frozen pattern one should not expect
probability density to decay exponentially, rather it shou
display several peaks, broadened due to the chaotic fluc
tions of the domain boundaries, at the lengths occurring
particular pattern and then go sharply to zero. This applie
both Pt and Pl . Figure 4~d! satisfies this prediction quite
well. The underlying reason of this kind of behavior is t
non-ergodicity of the system in the frozen pattern formi
regime.

The numerical results in fig. 4 imply that in the mod
studied in this paper simply the ergodicity of the syste
dynamics is a sufficient condition for the probability dist
bution function Pt( l ) to decay exponentially at length
greater than the correlation lengthj in any disordered state
On the contrary, the distribution of laminar domains is mo
specific and informative.Pl( l ) still decays exponentially in
the strongly chaotic states. In the spatiotemporally interm
tent state however the behavior ofPl varies widely: it might
or might not decay exponentially. For instance, in case of
‘‘nuclear’’ STI state we observe the crossover from expon
tial to power law type of decay. Similarly to Ref. 19 w
expect to see a pure power law decay at the transition p
u5un .

V. PHASE TRANSITIONS

A. Order parameters

As mentioned above, we expect to have 4 distinct ph
transitions, in which the system goes from either unifo
state or 2-cycle to a chaotic state. The transition to chao
this example of an extended system with a local conserva
law does not follow the period doubling cascade or ot
routes to chaos characteristic of low dimensional dynam
systems, instead the system goes directly from a simple
namical state~fixed point, period-2! to a chaotic state. In
other words it has a character similar to phase transition
Hamiltonian statistical systems where a symmetry of a ba
state is destroyed upon crossing of the critical point. T
feature is common to all the phase transitions in this mo

A conventional dynamical systems approach to the tre
ment of phase transitions in a deterministic chaotic sys
would be to calculate the maximal Lyapunov expone
lmax. The bifurcation from the ordered to disordered st
then occurs at the values of the parameters where the e
nent changes sign and becomes positive. In the case of C
with a conservation law, one of the exponents is always z
thereforelmax does not change sign, but increases~continu-
ously or discontinuously, depending on the type of tran
tion! from zero as the system crosses the boundary betw
the ordered and the disordered phase. The maxi
Lyapunov exponent can be considered as an example
global ~intensive! order parameter.

On the other hand, in order to get some additional
sight into the spatial dynamics of the system, it might
CHAOS, Vol. 7,
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advantageous to introduce a local~extensive! order param-
eter. A good candidate seems to be the densityh of the
Kolmogorov–Sinai entropy,SKS :

h5
1

L
SKS5

1

L (
lm.0

lm . ~22!

It is clearly zero in the ordered phase and positive in
disordered phase.

The calculation of the Lyapunov spectra is numerica
costly, so a different approach is used for comparison, ba
on the reduced description of the system’s dynamics.
terms of reduced dynamics the phase transition from the
dered to the disordered state can be represented as th
pearance of a set of disjoint turbulent domains on the lam
background. This leads us naturally to the measure of the
of turbulent domains,r t , as another local order paramete
describing how the laminar state becomes turbulent. In
ordered stater t50, in the disordered state 0,r t,1.

And, finally, let us introduce yet another order para
eter, ech . One can decompose the chaotic dynamics i
modes using the Karhunen–Loeve decomposition.22 The
mode intensityEk is defined as the eigenvalue of the integ
equation,

(
i51

L

K~ j ,i !ck~ i !5Ekck~ j !, ~23!

where the kernel

K~ i , j !5^ui
nuj

n&n ~24!

is just the 2-point correlation function. Due to the trans
tional invariance of the system~in case of ergodic dynamics!
K( i , j )5C( i2 j ) and therefore the eigenfunctionsck( i ) are
just Fourier modes. Consequently, the eigenvaluesEk are
given by the values of the static structure function,

Ek5S~k!5^uuk
nu2&n , ~25!

whereuk
n is the Fourier transform of the map variable.

The total intensity of the dynamics is defined
E5(mEm . It includes the contributions from the chaotic a
well the non-chaotic modes.

In the non-chaotic phases L1 and L2 the stable station
state is given by the general formula~5!. Therefore, the
structure function might only be non-zero at two values
the wave vectork:

S~0!5u2, ~26!

and, for a zig–zag state,

S~p!5A2. ~27!

In other words, if we want the order parameter to rep
sent the strength of chaos in the system, it should be defi
through the intensity of the chaotic modes only. So we arr
at the following expression:

ech5
1

L (
m51

L/221

S~km!, km5
2pm

L
, ~28!
No. 2, 1997
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319R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
which is identically equal to zero in any ordered phase a
larger than zero in any disordered phase.

All order parameters introduced are expected to beco
asymptotically independent of the system sizeL in the ther-
modynamic limitL→`.

B. Continuous transition

Most of the attention in this study was devoted to t
order–disorder transition occurring at the boundary L1–
This transition is easy to study and it is expected to be q
common in models described by a CML with diffusive co
pling and conserved map variable density.

The transition point is defined by the equatio
f 8(uc)51/2. One can see from eq.~6! that atu5uc a period
2 bifurcation occurs and thek5p mode becomes growing
making the uniform configuration unstable.

Details of the transition~see the next section! suggest
that this transition is a continuous~second order! phase tran-
sition, and the numerical data support this conclusion. On
the clear indications of this fact is presented in fig. 5, wh
shows that the correlation length diverges as we approach
phase transition point,

j}~uc2u!2n, ~29!

with critical exponentn estimated to be of order 0.8. Th
correlation length is hard to measure however, and the
cision of this result is low, so that this value cannot be co
sidered reliable.

A better diagnostic of a diverging lengthscale is the a
erage length of a laminar domainl l5( l lPl( l ) which is seen
to scale@fig. 6~a!# as

l l}~uc2u!2m, m'1.060.02, ~30!

which implies, in particular, that very close to the transiti
point the lattice configuration consists of a few large lamin
domains, separated by turbulent defects of finite size.

The average length of a turbulent domainl t5( l lPt( l )
does not scale@fig. 6~b!#, but shows an exponential depe
dence on the distance from the critical point:

l t' l t
crexpS uc2u

ut
D , ut'0.006, ~31!

approaching the limiting value

FIG. 5. Correlation length diverges near the continuous phase trans
The data for the lattice with 2048 sites is used.
CHAOS, Vol. 7,
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lim
u→uc

l t5 l t
cr56. ~32!

This means that the onset of disorder at this particular ph
transition is dominated by the creation of defects of the fix
width l t

cr . In particular, one can check that the width of a
the defects in fig. 3~c! is about 6 lattice spacings.

All of the order parameters defined above take a z
value in the non-chaotic phase and increase continuo
from zero in the chaotic phase as we move away from
transition point. What is more interesting, they scale algeb
ically with the deviation ofu from the transition point~fig.
7!, all with different critical exponents:

lmax}~uc2u!bl, bl'0.860.03; ~33!

h}~uc2u!bh, bh'2.060.05; ~34!

r t}~uc2u!br, br'1.060.01; ~35!

ech}~uc2u!be, be'0.560.01. ~36!

One can use these values to compare the transition with s
lar phase transitions in other conserving systems, both c
tinuous and discrete, and perhaps determine whether
transition belongs to some universality class.

C. Critical exponents

A closer look at the details of the phase transition
u5uc reveals that equation~35! is to be expected and tha
the transition should necessarily be continuous, as a resu
the conservation law and a particular feature of the local m
f (x).

As was mentioned in the previous section, the chang
the growth rate of thek5p mode is responsible for the
transition. One can determine from eq.~6! that foru close to
uc , equating the Lyapunov exponent with the growth ra
the linear stability analysis of the uniform state gives

lp'28b~u2uc!, ~37!

which changes sign as the system moves across the trans
point, from the ordered state L1 to disordered state T2.
the transition point the growth rate obviously vanishes, m
ing the zig–zag state neither stable nor unstable in the lin
sense. In fact as mentioned in section II, the zig–zag s
given by eq.~5! ~type-II 2-cycle! with arbitrary amplitude
A can exist atu5uc ~and only atu5uc) and is stationary,
meaning that the amplitudeA neither grows nor decays. Thi
is in contrast with the result for phase L2~type-I 2-cycle!,
where the amplitude of the stable state is defined by eq.~10!.

This fact results in some interesting consequences for
system dynamics in the disordered phase close to the tra
tion point. Most of the lattice develops a zig–zag pattern~fig.
8! similar to the one we just discussed,

ui
n5uc1~21! i1nAi , ~38!

where now the amplitudeAi is not a constant, but a slowly
varying function of the lattice site. The whole lattice cann
be in such a state foru,uc because of the conservation law
In order to compensate for the difference, several sim

n.
No. 2, 1997
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320 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
turbulent defects separating laminar domains form, with
fixed width l5 l t

cr ~see the previous section! and the local
density of the map variable,

1

l (
i5 i0

i01 l21

ui
n5uc2du, ~39!

which is lower than the critical valueuc by du.

FIG. 6. Critical behavior of average domain lengths:~a! length of laminar
domains diverges algebraically,~b! length of turbulent domains converge
exponentially.
CHAOS, Vol. 7,
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a

Heredu, should not strongly depend onu, becauseu is
not a local parameter prescribing the dynamics. On the c
trary, the local density in the turbulent defect is only det
mined by the structure of the interface separating two la
nar domains that have their local densities fixed atuc ,
independent ofu. The structure of the interface, in turn, de
pends primarily on the width of the turbulent domain, whi
is seen to depend very weakly onu. Numerical results sup-
port this conclusion.

This results in the value of the conserved quantity be
‘‘adjusted’’ to comply with the conservation law to give o
average

r luc1r t~uc2du!5u. ~40!

Now we can easily extract the dependence ofr t on u. Since
r t1r l51,

r t5
~uc2u!

du
. ~41!

This derivation confirms the value of the critical exp
nentb51. Thus the conservation law is ultimately respo
sible for the way this particular phase transition occurs a
for its type. The ordered state turns into a disordered one
developing a set of very similar turbulent domains~defects!,
which have a fixed length@the deviation in eq.~32! from the
l t56 is due primarily to ‘‘defect interaction’’ effects#, but
whose number increases as the system moves further
further away from the transition point, so as to compens
for the change in the density of the map variable in the la
nar regions with respect to the average value given by
conservation law. We may therefore suggest that defects
FIG. 7. Scaling of order parameters at the continuous phase transition calculated on the lattice with 2048 sites:~a! maximal Lyapunov exponentlmax, ~b!
Kolmogorov–Sinai entropy densityh, ~c! measure of the turbulent setr t , ~d! intensity of chaotic modesech .
No. 2, 1997
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321R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
a more important role in order–disorder transitions in co
serving systems than in non-conserving systems.17

The value of the critical exponent for the maxim
Lyapunov exponentbl'0.8 numerically obtained in eq
~33! is different from the one predicted by eq.~37!. However
the latter value is calculated for a reference trajectory co
sponding to the uniform configuration and since foru,uc
the system is in the chaotic state, the validity of eq.~37! is
far from being obvious, no matter how small the distance
the transition point is. We should also consider finite s
effects. It is natural to expect that numerical and theoret
values agree if there is just one positive Lyapunov expon
and therefore no mode mixing. From eq.~6! it follows that
the next mode to become growing is the mode w
k5p2(2p/L) and this happens when

u5uc2Du, Du'
p2

16bL2
. ~42!

So we might expect the crossover behavior for the expon
bl :

bl'0.8, uc2u.Du, ~43!

bl51.0, uc2u,Du. ~44!

In practice the value ofDu was usually so smal
(Du'331025 for L5128), that eq.~43! was satisfied for
all deviations ofu from the critical value used in our numer
cal calculations~at most 231024).

And finally we would like to mention that the value o
the critical exponentbh can be evaluated from the limitin
form of the Lyapunov spectrum. Close to the transition po
the positive Lyapunov exponents are well approximated
the following expression:

lm5lmax2c1m
g, g50.760.1. ~45!

Together with the equations~22! and ~33! this implies that
the critical exponent corresponding to the Kolmogoro
Sinai entropy density is given by

bh5blS 11
1

g D , ~46!

that yields the valuebh51.9460.20 consistent with eq.~34!.
We might expect these exponents to define a universa

class for the onset of spatiotemporal chaos. The argum
leading to the predictions for the values suggest that the c
may depend both on the existence of a conservation law
on special symmetry properties of the map function. T
restrictions onf (x) can be obtained in the following way.

One starts with the relation between the amplitude a
the local density of the type-II 2-cycle for an arbitra
f (x):

(
n2odd

1

n!
An21f ~n!~u!5

1

2
. ~47!

Close to the transition pointu5uc it can be rewritten as

052r ~u2uc!A1d3A
31d5A

51•••, ~48!

wherer5 f 9(uc) and coefficientsdn are defined as
CHAOS, Vol. 7,
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1

n!
f ~n!~uc!, n>3. ~49!

Depending on the values of parametersr andd3, we can
have either a subcritical or supercritical bifurcation at t
transition point. The special case studied in this paper co
sponds to

d35d55•••50, ~50!

and is intermediate between the two types of bifurcation.
These special properties follow immediately for contin

of a and b from the parabolic nature of the map we ha
used. More generally we can consider maps of the form

f ~x!5ax1bs~x!, ~51!

where s(x) is an arbitrary function symmetric about it
maximum. By rescaling and shifting the origin ofx and
choice of normalization ofs we can sets(0)50, the maxi-
mum ofs to occur ats51/2 and thens(1/2)51, leaving the
two parametersa and b as well as the conserved quanti
u to define the system. For this general family of maps
degenerate bifurcation to the period-2 state occurs only
a51/2 and foru at the maximum ofs, i.e.u51/2. Thus the
universality class is codimension-2—two parameters mus
tuned to arrive at this type of transition.

For other values ofa andb in ~51! the bifurcation to the
period-2 state will be either supercritical or subcritical. F
the supercritical case a stable laminar 2-cycle state devel
which may be the first step in a subharmonic cascade.
the subcritical case attractors develop far away in ph
space, and a full non-linear analysis is needed to determ
the type of behavior.

D. Hysteretic transitions

Now we turn our attention to the phase transitions t
we expect to occur at the boundaries L2–T1, L2–T2 a
L1–T1. As we are going to see later, all three are very si
lar, so we will concentrate on the transition at L2–T1 belo

There is a considerable difference between the transi
at L1–T2 and the transition at L2–T1: in the former case
asymptotic state in both L1 and T2 is unique, while in t
latter case the asymptotic state in the ordered phase L2
be either ordered or spatiotemporally chaotic. As a result
should specify between which states the transition occur

It will be convenient to introduce an additional param
eter v(u) characterizing the volume of the of the basin
attraction. For example, as we know from section IV in t
sub-phaseL2l (up,u,un) the attractor is unique and there
fore the basin of attraction is the whole configuration spa
with volumev l(u)51L2151.

In the sub-phaseL2p the non-chaotic attractor coexis
with the chaotic one, so we have 0,v l(u),1 for
ua,u,up . Since there are no other attractors in this su
phase, the volume of the basin of attraction of the chao
attractor is given byv t(u)512v l(u). Numerical data sug-
gest that most of the initial conditions inL2p result in spa-
No. 2, 1997
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322 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
tiotemporally intermittent chaotic asymptotic state and the
fore typically v t(u)@v l(u). Moreoverv l(u)→0 asu→ua

1

while v t(u)→0 asu→up
2 .

At the point u5ua the 2-cycle state loses its stabilit
through a subcritical bifurcation. Outside the phase L2
2-cycle state cannot exist and as the system crosses the
boundary all order parameters jump from zero in the ph
L2 to some non-zero values in the phase T1~see fig. 2!. As a
result one observes a discontinuous transition in the n
chaotic state: the laminar state abruptly turns into the cha
one.

However, there is apparently no phase transition in
chaotic state at this point: the dynamics of the system on
T1 side of the boundary is very similar to the dynamics
the system evolving on the chaotic attractor on the L2 s
All order parameters change continuously as the sys
crosses the boundary from L2 to T1. Sincev l(u)→0 as
u→ua

1 , changing the direction does not modify this conc
sion: the chaotic attractor of the phase T1 smoothly tra
forms into the chaotic attractor of the phase L2.

At u5up the situation is reversed. Obviously there cou
be no phase transition in the non-chaotic state. On the o
hand, the chaotic attractor does not exist inL2l , therefore
there should be some kind of phase transition in the cha
state: the order parameters are zero forup,u,un , but take
on non-zero values in the chaotic state forua,u,up . Thus
u5up corresponds to the onset of STI.

The coexisting attractors form a hysteresis loop in
sub-phaseL2p ~fig. 2!. If we start atu.up and gradually
decrease parameteru the system will remain in the non
chaotic state whileu.ua and then jump to the chaotic one
u5ua . Conversely starting atu,ua and gradually increas
ing parameteru makes the system remain in the chaotic st
while u,up . At u5up the chaotic state becomes no
chaotic thus closing the loop.

There is a numerical complication here: it is not possi
to establish the exact value of the critical parameterup for a
system of finite size. Foru→up

1 the lifetime of the chaotic
transients becomes very long and one cannot reliably de
mine the type of the asymptotic state. On the other ha
v t(u)→0 asu→up

2 , which means that it becomes increa
ingly hard to find initial conditions resulting in a persiste
chaotic state asu gets close toup , especially for small sys-
tems. Althoughv t(u) grows rapidly with the system size, th
smalleruu2upu is the larger the system should be in order
obtain the persistent chaotic state. Therefore one canno
liably determine the values of the order parameters in
chaotic state close tou5up .

As a result, it is even hard to determine reliably wheth
the transition atu5up in the chaotic state is actually con
tinuous, although the correlation length seems to diverge
proaching the transition point. The order parameters do
provide a clear picture either. Bothh andr t seem to increase
continuously from zero, butlmax andech jump discontinu-
ously as the system moves across the transition point to
chaotic sub-phaseL2p . All order parameters gradually in
crease as the system moves away from the transition p
toward the chaotic phase T1. The number of posit
CHAOS, Vol. 7,
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Lyapunov exponents also grows showing the increase in
number of chaotic modes. These results are consistent
Ref. 24. But so far we do not have reliable data that w
allow us to determine whether this transition in fact belon
to the universality class of directed percolation or not.

There is a similarity between the transition atu5up and
the continuous phase transition atu5uc : the laminar state
becomes chaotic through the appearance of a set of turbu
domains that gradually spread over the whole system. N
ertheless there is an important difference: the STI state
served inside T2 can never become completely laminar
cause of the conservation law, while the STI state ins
L2p may decay into a completely laminar state with time

The above discussion applies completely to the cha
sub-phaseL2n which corresponds toun,u,ub . One just
has to replace T1 with T2,up with un andua with ub . In
particular,v l(u)→0 asu→ub

2 . One particular feature of the
chaotic attractor in this sub-phase is worth mentioning:
0.1&u&0.15 the measure of the turbulent set,r t , grows
linearly with u.

The phase transition L1–T1 atu5ud is also very similar
to the transition L2–T1. One just has to replaceL2p with
L1 f , up with uf , andua with ud in the above discussion.

Here, unlike the phase L2, the laminar state is the u
form state, not the 2-cycle. The uniform state is unstable
u.ud , so in order for the laminar regions to be stable t
local density inside them should be in the rangeuc,u,ud
characteristic of the ordered phase L1. This is in fact
case: the value of the local density in the laminar region
ul'0.53.

InsideL1 f the number of positive Lyapunov exponen
grows linearly withr t , while the latter grows linearly with
u. This is the kind of behavior one expects in a system wh
all chaos is localized in turbulent domains.

All three cases of hysteretic transitions observed in
model are very similar and represent many of the charac
istic features of the specific route to chaos. In particular, S
appears whenever the uniform absorbing state experienc
subcritical bifurcation at the transition point~e.g., u5ua);
the hysteresis loop forms as a result of the bistability; on
of STI ~e.g., atu5up) can be either continuous or discon
tinuous, depending on the types of defects supported by
laminar~absorbing! state; the lifetime of the ‘‘laminar’’ tran-
sients diverges at the onset; the confinement effects enh
the stability of the absorbing state in relatively sm
systems.

VI. LYAPUNOV DIMENSION

In this section we will briefly comment on the applica
bility of the Lyapunov dimension as a parameter charac
izing the dynamics in the system under consideration. T
has been used by a number of authors~e.g., Refs. 23 and 10!
to assess the strength of chaos in non-linear dynamical
tems.

The Lyapunov dimension is defined as

DL5n1
nn

nn1nn11
, ~52!
No. 2, 1997
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323R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
wherenn5( i51
nl i andn is such thatnn.0,nn11,0. It was

suggested in Ref. 1 thatDL is not defined for the system
considered, because for the values of the control parame
used allnn’s were positive.

This conclusion appears incorrect. First of all, this on
happens for some restricted set of control parameters.
other values of parameters the Lyapunov dimension is
fectly well defined. Second, there is no problem with
nn’s being positive: it only means thatDL5L21, i.e., the
dimension of the attractor coincides with the dimension
the configuration space (L variables with one constraint!
meaning that the attractor fills the configuration space.
one can see from the fig. 9 this only happens away from
boundaries inside the chaotic phases T1 and T2, where
system is in the strongly chaotic regime withr t'1.

The numerical results show that the Lyapunov dime
sion thus defined is a good~albeit costly to calculate! mea-
sure of the strength of chaos in the system under consi
ation. It is a continuous function of control parameters a
can in principle be used as an alternative order parame
though it proved to be hard to calculate with the necess
precision close to the phase transition points.

VII. SINGULARITIES IN THE LYAPUNOV SPECTRUM

A. Introduction

It has been suggested9 that all coupled maps with a con
servation law should have a singularity in the spectrum
Lyapunov exponents at the valuel50. The origin of the
divergence of the number of Lyapunov modes with nega
exponents close to zero is generally explained by the follo
ing arguments.

A spatially uniform autonomous system with a loca
conserved density is considered. The sufficiently coa
grained asymptotic state of such a system is supposed t
uniform, i.e., the density in the asymptotic state should
depend on the spatial coordinates. Now a long wavelen
density perturbation is imposed on such an asymptotic s

FIG. 8. Typical lattice configuration near the continuous phase trans
(u50.46): two large laminar domains with different amplitudesA1 and
A2 are separated by two turbulent defects of the same width. Lattice si
256.
CHAOS, Vol. 7,
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Because of the conservation law the only mechanism
which such a perturbation can decay is diffusion from t
regions with high average density to the regions with lo
average density. This process can be described by an e
tive diffusion equation, which can be considered as a lo
wavelength approximation of the original evolution equatio
As a result the decay rate of a long wavelength pertur
tions should be given by a quadratic function of the wa
vectork.

In our model this functional dependency can be mo
vated by analogy with the analytic expression obtained fo
stable non-chaotic phase L1. Since there is an exact 1-
correspondence between the Fourier mode number and
decay rate in L1, we can formally rewrite eq.~6!, re-
expressing the number of the exponentm through the wave
vectork:

l~k!5 lnU124~a1b22bu!sin2S k2D U. ~53!

Here for k→0 we havel(k) } k2 and the density of
Lyapunov exponents diverges,

n~l!}ulu21/2→`, l→02. ~54!

One can attempt to apply a similar numerical analysis
the chaotic phase. We start with writing the evolution equ
tion ~1! in Fourier space:

uk
n115uk

n24~a1b22bu!sin2S k2Dukn
14bsin2S k2D (

k8Þ0,k

uk8
n uk2k8

n . ~55!

Consequently the JacobianJlm
n 5]ul

n11/]um
n of the evolution

transformation takes on the following form in the Fouri
space:

FIG. 9. Lyapunov dimensionDL (d) and turbulent set measurer t ~1! as
functions of the conserved quantityu, calculated on the lattices with 128
and 2048 sites, respectively. Only the values in the chaotic state are sh
if two attractors coexist.

n

is
No. 2, 1997
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324 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
Jkk8
n

5S 124~a1b22bu!sin2S k2D D dkk8

18buk2k8
n sin2S k2D ~12dkk8!. ~56!

Fourier modes are not eigenvectors of this matrix~unless all
uk
n50 as in the uniform state!, but since the off-diagona
elements are of orderO(k2) Fourier modes can serve as
good first order approximation to the exact eigenvectors
k sufficiently small. This argument suggests that wave vec
k should be a good label for the slow modes~and smalll) of
the system in chaotic as well as spatially ordered states.

B. Structure of the Lyapunov vectors

Numerically the Lyapunov spectrum can be calcula
using the QR decomposition of the product of the Jacobi
Jlm
n ,

JnQn215QnRn, ~57!

whereQ is orthogonal andR–upper-diagonal to yield

Jn•••J05QnRn
•••R05QnR̃n. ~58!

The columns ofQn give Lyapunov vectors and the diagon
elements ofR̃n–the corresponding Lyapunov exponents
then-th step:

lm5
1

n
ln~R̃mm

n !5^ ln~Rmm
n !&n . ~59!

Figures 10–12 show several typical time averag
power spectra of the instantaneous Lyapunov vectors a
with the corresponding Lyapunov spectra. The power spe
are represented in the form of the density plots showing
relative contributionPm(k) from the Fourier mode with
number kL/2p to the m-th Lyapunov vector, while the
Lyapunov spectra show the correspondence betw
Lyapunov vectors and exponents. The power spectra are
malized,

(
k

Pm~k!51, ~60!

so thatPm(k) can alternatively be interpreted as the pro
ability distribution functions.

We would like to mention that due to the ergodicity
the dynamics the power spectra~as well as Lyapunov spec
tra! should be reproducible, i.e., a different initial configur
tion with the given set of control parameters should prod
the same spectrum and this is found to be the case.
interesting to note though, that we obtained a unique fo
for the spectra even for the values of the control parame
producing frozen patterns, where we expect ergodicity
break down.

We start with the spectra calculated inside the cha
phases T1 and T2. One can easily notice that a singula
appears in the spectrum of Lyapunov exponents@fig. 10~b!#
when the dominant contribution to the Lyapunov vecto
corresponding to a slow evolution~smalll) comes from the
CHAOS, Vol. 7,
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long wavelength Fourier modes and there is at least an
proximate 1-to-1 correspondence between the expon
number and the dominant Fourier mode number for the
evant vector@fig. 10~a!#. It is therefore natural to expect th
small negative Lyapunov exponents to be determined by
decay rate of the corresponding Fourier mode.

In the long wavelength limitk→0, the latter could be
determined from a hydrodynamic analysis25 of the problem.
It was argued1 that at long wavelengths the effect of all sho
wavelength corrections to the equation of motion~55! can be
combined into a stochastic noise term and a renormali
diffusion constantD, producing an effective~discrete!
Langevin equation:

uk
n112uk

n52Dk2uk
n1k2hk

n, ~61!

with a d-correlated noise term

^h i
nh i 8

n8&5Bd i i 8dnn8. ~62!

According to the Central Limit Theorem such noise avera
to small values on large lengthscales and therefore, for sm
k, the decay rate of the Fourier modeuk is equal to2Dk2.

Because of the conservation law one of the exponent
our model is always equal to zero. Let it belm0

. It obviously
corresponds to the Lyapunov vector withk50. Typically,
for small l, the relation between the numberm of the

FIG. 10. Power spectrum~a! and Lyapunov spectrum~b! at u50.7, inside
the chaotic phase T1. The dominant contribution to the Lyapunov vec
corresponding to smalll comes from the long wavelength Fourier mod
only „the white dashed line gives the fit provided by eq.~63! with
a50.6…. As a result a pronounced singularity appears in the Lyapu
spectrum~exponent density becomes singular atl50). Lattice size is 128.
No. 2, 1997
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325R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
Lyapunov vector and the dominant long wavelength Four
modek can be represented by the following simple form:

km5a
2p

L
~m2m0!. ~63!

Parametersm0 and a;0.5 are determined from the
Lyapunov spectrum and power spectrum, respectiv
(m050,a50.5 inside L1!.

The Lyapunov exponentlm is in fact calculated as a
time averaged decay rate of the corresponding instantan
Lyapunov vector. Since the time averaged power spect
Pm(k) gives the averaged relative contribution of the Four
modek to them-th Lyapunov vector, we might estimate th
value of them-th exponent as

lm52D(
k

Pm~k!k2. ~64!

As one can deduce from fig. 10~a!, for u50.7,Pm(k) is
sharply peaked atkm , so approximatingPm(k)5dkmk we
readily obtain that the form of the Lyapunov spectrum f
small negative values of the exponent should be given b

lm'2Dkm
2 , m5m0 , m011, . . . . ~65!

FIG. 11. Power spectrum~a! and Lyapunov spectrum~b! at u50.3, deep
inside the chaotic phase T2. The dominant contribution to the Lyapu
vectors corresponding to smalll comes from the long wavelength Fourie
modes, but due to the contribution from mid-wavelength modes the sin
larity in the exponent density becomes much weaker. Lattice size is 12
CHAOS, Vol. 7,
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One can easily check that the numerically calculated ex
nents are in fact given quite precisely by this expression w
D'0.32 for 0,k&p/4. So we recover eq.~54!, but now for
the chaotic state.

Figure 11 provides us with another typical example
the spectra corresponding to the strongly chaotic dynam
now calculated foru50.3. One can notice that the singula
ity in the Lyapunov spectrum in fig. 11~b! is still present,
although the quadratic fit provided by~65! is quite poor com-
pared to the one foru50.7.

The power spectrum@fig. 11~a!# shows that, similarly to
the previous case, the dominant contribution to the Lyapun
vectors corresponding to slow evolution comes from the lo
wavelength modes, but now the distributionPm(k) is much
broader. This means that we can no longer approxim
Pm(k) by dkmk and there could be considerable corrections
eq.~65!, which does not however change the general conc
sion about the presence of the singularity in the spectrum
Lyapunov exponents atl'0.

These arguments work well in the area of strong cha
where the large scale dynamics is determined by the lo
wavelength modes, i.e., modes withk!1/j, wherej is the
correlation length in the system. When we approach a c
tinuous phase transition, though, the correlation length gro
and becomes comparable to the system sizeL. When this
happens, the nonlinear terms in eq.~55! become relevant on

v

u-

FIG. 12. Power spectrum~a! and Lyapunov spectrum~b! at u50.455, close
to the point where the system experiences the continuous phase trans
There is a considerable contribution from the short wavelength Fou
modes to the Lyapunov vectors corresponding to smalll resulting in the
disappearance of the singularity. Lattice size is 128.
No. 2, 1997
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326 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
every scale1 and their effect can no longer be emulated by
effective noise term. This results in a strong coupling b
tween different long wavelength modes~i.e., modes with
k;1/L) and therefore the approximate 1-to-1 corresp
dence between the mode number and its growth rate is c
pletely destroyed. This means that there is no reason to
pect the divergence of the number of slowly evolving mod
anymore.

Figure 12~a! suggests that there is a strong mode mix
in the system and it is not possible to extract the domin
contribution to the Lyapunov vectors. In fact, we really ha
a continuous phase transition atu5uc , very close to
u50.455, and it is responsible for the disappearance o
singularity in the spectrum in fig. 12~b!. One might still hope
to find a trace of a singularity at this particular value ofu by
going to much larger system size~higher resolution!.

C. Positive side singularity

Some models with a conservation law9 are found to have
a density of exponents diverging on the positivel side,

n~l!→`, l→01, ~66!

although this feature is not considered very common. T
divergence is present in our model too@see fig. 10~b! for
example#, but is somewhat weaker than the divergence
negativel: for some values of the parameters it can
barely seen even for large lattices~typically L.102 is nec-
essary!. For l→01 the spectrum can usually be fitted qui
precisely by a quadratic function,

lm'D̃~m2m0!
2, m5m0 ,m021, . . . , ~67!

which means that the singularity ofn(l) is inverse-square
root on both positive and negative sides.

Numerically calculated spectra show no sign of smoo
ing out of the singularity~on either side! with increasing
resolution~increasing size of the system! up to L5512 @the
results forL5128 andL5512 are presented in fig. 14~a!#
and also suggest that the fit~67! could be good for positive
l as large as 0.3lmax.

Figures 10~a! and 11~a! suggest that it is possible t
extract the dominant Fourier modes corresponding to sm
positivel. Again their wave vectors scale roughly linear
with m02m and therefore equation~63! should be replaced
by

km5ã
2p

L
~m02m!, ~68!

for m,m0. Equation~64! though should be abandoned
favor of a more precise one, preferably derived directly fro
the evolution equation~55!. We intend to explore this ques
tion in more detail later.

D. Effective diffusion constant

We should also mention that the values of the effect
diffusion constantD numerically obtained from eq.~65! do
CHAOS, Vol. 7,
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not coincide with the ones obtained through the dynam
structure functionS(k,t). According to~61! it is defined~see
Ref. 1! as

S~k,t !5Bk2e2Dk2t. ~69!

It will be convenient to distinguish these using the notati
Dls for the former andDsf for the latter. In the regions o
parameter space where the effective Langevin equatio
applicable@and hence eq.~69! is valid# these approaches ca
give substantially different results. This is yet another in
cation that equation~64! can only provide a very crude est
mate and should be amended considerably to obtain adeq
results.

It is instructive to compare howDls andDsf change if
parameterb is varied while botha andu are fixed~see fig.
13!. For u*1.3Dls.Dsf and they both grow with increas
ing b. Numerical data available so far suggests th
Dls /Dsf→1 asb→` ~for strongly chaotic systems!.

Foru&1.3Dsf drops almost to zero indicating that the
is almost no diffusion in the system. Indeed we know th
this is the region of locked chaotic dynamics (T1l). So this
result is not surprising: the formation of a locked structu
prevents diffusion~on any scale larger than some typic
scale determined by that structure!. We cannot probe smalle
scales using the dynamic structure function because the
fective Langevin equation~61! is not valid for k large
enough, but supposedly diffusion survives there. It is int
esting to note however that locking has apparently no ef
on the Lyapunov spectrum: the change inDls is very gradual
acrossT1.

VIII. ROLE OF THE CONSERVATION LAW

Now that we have studied the dynamics of the CM
with the conservation law quite thoroughly and compared
characteristic phenomena with those observed in CM

FIG. 13. Effective diffusion constant as a function of parameterb. a50.4
and u50.8. The values ofDls ~1! are determined using the Lyapuno
spectrum of the lattice withL5128, assuminga50.5.Dsf (d) is obtained
from the dynamic structure function calculated fork50.01p on the lattice
with L52048.
No. 2, 1997
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327R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
without any conservation laws we would like to discu
whether the distinguishing features are really explained
the presence of the conservation law.

It is often very hard to distinguish the effect of the co
servation law on the dynamics of a system from the effe
introduced by other aspects of the evolution equation. H
we would like to explore some consequences of violating
conservation law, trying to retain the structure of the origin
equation ~1!.

First of all, we are looking for internal homogeneo
perturbations that would violate the conservation law of
~1!, but would preserve the structure of the equation. Thi
easily furnished by the following modification of the origin
evolution equation:

ui
n115ui

n1eg~ui
n!1~ f ~ui21

n !22 f ~ui
n!1 f ~ui11

n !!,
~70!

where the local map functionf (x) is the same as above an
a perturbationg(x) is introduced. One can easily notice th
in the simplest case of the uniform state it reduces to
equation determining the evolution of the average densit

un115un1eg~un!. ~71!

This equation, though, does not provide us with any relia
information concerning the dynamics of the average den
in the case of a non-uniform state.

Second, in order to be able to compare two systems,
with and one without the conservation law, we should ens
that the latter is violated only ‘‘mildly.’’ In other words, we
would like the perturbed system to have a phase diagram
could be compared to that of the original system. In parti
lar we would like to preserve the dimensionality of the p
rameter space. Sinceu is no longer conserved it is not
parameter of the dynamics. Instead we introduce another
rameteru0 that will enter the evolution equation through th
perturbation functiong(x).

By ‘‘mild’’ conservation violation we also mean that th
change of the originally conserved average densityu during
any single time-step is sufficiently small:

uun112unu!1. ~72!

We would also like the fluctuation of the average densityu
to be bounded, such that

u02du,un,u01du, ~73!

for some finitedu at any time stepn. Then we would be able
to compare the dynamics of the perturbed system with tha
the original system with conserved quantityu'u0.

Our primary interest in this section is the relation of t
conservation law to the existence of a singularity in the sp
trum of Lyapunov exponents. It is thus reasonable to co
pare the perturbed system with the original one, describe
the equation~1!, at the value of the conserved quanti
u50.8, where the conserving system displays a strongly c
otic dynamics and has a Lyapunov spectrum with a p
nounced singularity atl50.

We will start with the following choice of the~non-
linear! perturbation function:
CHAOS, Vol. 7,
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g~x!5~u02x!3, ~74!

and choosee50.02. The dynamics of the perturbed syste
seems qualitatively very similar to the dynamics of the u
perturbed system, but now the average densityu is not con-
served and fluctuates aboutu0 with a standard deviation o
order few percent.

Figure 14 of the Lyapunov exponent spectra focuses
the parts corresponding to slow evolution~small l). Com-
paring the spectrum of the modified system with that of
original system foru5u050.8, one can easily notice that th
singularity is clearly present in the conserving case, wh
the spectrum of the perturbed system appears to be simil
the spectrum of the original system, but slightly tilted a
shifted downwards.

In order to better understand the origin of such a me
morphosis it is advantageous to use another type of pe
bation which is a lot easier to interpret and study analy
cally:

FIG. 14. ‘‘Slow’’ part of Lyapunov spectra of the unperturbed system a
the system with nonlinear ‘‘dissipative’’ perturbation.~b! The spectrum of
the perturbed system (u050.8, L5128) with e50.2 appears to be shifted
downwards and tilted with respect to~a! the spectrum of the unperturbe
system (u50.8). Here the data for two lattice sizes,L5128 (d) and
L5512 ~1!, is superimposed to show the finite-size effects. The density
exponents is seen to be singular on both the positive and negative side
solid and the dashed lines give the quadratic fit provided by eqs.~67! and
~65!, respectively.
No. 2, 1997
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328 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
g~x!5u02x. ~75!

Sinceg(x) is linear, equation~71! now describes the evolu
tion of the average densityu for an arbitrary initial state. For
e.0 (0.001<e<0.1 was used! the asymptotic state is a con
figuration withu5u0.

The effective Langevin equation corresponding to~75!
should read as

] tu~x,t !52eu1D]x
2u1]x

2h~x,t !. ~76!

On large lengthscales noise averages out and we ob
the following dependence of the growth rate on the wa
vector:

l~k!52e2Dk2, ~77!

i.e. we should expect~for smallk’s! the Lyapunov spectrum
of the perturbed system to be shifted downwards
dl52e with respect to the spectrum of the conserving s
tem, while retaining the same type of singularity. The to
decay rate is then determined by a linear combination~at
least for small enough coupling! of the diffusion with local
dissipation.

FIG. 15. ‘‘Slow’’ part of Lyapunov spectra of the system with linear ‘‘dis
sipative’’ perturbation. For small perturbation~a! e50.01 as well as for
large perturbation~b! e50.1 the spectrum gets shifted downwards
dl'2e with respect to the spectrum of the unperturbed system. Lat
size is 128 andu050.8. The dashed line gives the quadratic fit provided
eq. ~77! with D50.33 @assuming thatk is given by eq.~63! with a50.5].
CHAOS, Vol. 7,

Downloaded¬29¬Aug¬2003¬to¬130.207.165.29.¬Redistribution¬subject¬
in
e

y
-
l

Comparing the spectra of Lyapunov exponents of
modified system~fig. 15! and the original system@fig. 14~a!#
for u5u050.8 we see that the numerically obtained spec
of the perturbed system follow the prediction of the Lang
vin equation~76! quite precisely for small (e50.01) as well
as for relatively strong (e50.1) perturbations.

We expect the negative shift of the ‘‘slow’’ part of th
spectrum to be attributed to the dissipative nature of the p
turbations used above. In fact we could have a positive s
or no shift at all. In order to see this we pick the non-line
perturbation functiong(x) with the first derivative which is
not negative-definite:

g~x!5
g2~u02x!

~~u02x!21g2!
, ~78!

with e.0. We usedg250.001 and 0.01<e<5.
Equation~71! does not hold anymore, but the numeric

data suggests that the dynamics of the system is ergodic
the averaged densityu in the asymptotic state fluctuate
aboutu0 with fluctuations being again of order few percen

Figure 16 shows the Lyapunov spectra of the perturb
system withu050.8. This figure suggests that the spectru
is indeed shifted in the direction of positive rather than ne

e

FIG. 16. ‘‘Slow’’ part of Lyapunov spectra of the system with ‘‘mixing’
perturbation. For small perturbation~a! e50.1 the tangent line~dashed! at
the inflection becomes tilted. The singularity disappears. For very str
perturbation~b! e55.0 the inflection vanishes completely. Lattice size
128 andu050.8.
No. 2, 1997
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329R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
tive values ofl. A small perturbation (e50.1) results in a
small distortion of the original spectrum: the slope of t
spectrum at the valuel50 on both positive and negativ
sides becomes non-zero, i.e. the singularity in the densit
Lyapunov exponents disappears. The slope increases we
and for sufficiently strong perturbation (e * 2.0) all traces of
the singularity vanish.

These examples suggest that there are, in fact, two
ferent aspects of the singularity in the Lyapunov spectrum
a system with the conservation law. The first one is the p
ence of a singularity at some valuel5l0. The numerical
data obtained suggests that the singularity survives in
special case of the linear perturbation functiong(x). A non-
linear perturbation results in the disappearance of the sin
larity. The Jacobian of a perturbed system can be written

J̃ kk8
n

5Jkk8
n

1e(
j>1

g~ j !~u0!

~ j21!!)i51

j21

(
ki

uki
n dS (

l51

j21

kl2k1k8D ,
~79!

whereJkk8
n is the Jacobian~56! of the conserving system. I

g(x) is non-linear the off-diagonal elements ofJ̃ kk8
n become

of orderO(1) instead ofO(k2). As a result Fourier mode
are no longer good as an approximation to the exact eig
vectors even for smallk. The wave-vectork can no longer
label the slow modes of the system and therefore there i
reason to expect the singularity in the density of Lyapun
exponents to remain. It becomes ‘‘smoothed out’’ by t
perturbation.

The second aspect is the actual value ofl0 in case a
singularity is present. We already saw that imposing lin
perturbation~75! madel0 become negative@cf. ~77!#. This is
a consequence of the shift of the ‘‘slow’’ part of the spe
trum as a whole in response to some local effects, e.g. d
pation.

We may therefore suggest, that since all known CML
with an additive conserved quantity possess a spectrum
Lyapunov exponents distinguished by the presence of
singularity atl50, a conservation law is a sufficient cond
tion for the existence of such a singularity. It seems to b
necessary condition as well, at least in the class of models~1!
studied in this paper. The singularity atl Þ 0 indicates that
there is a mechanism of~local! dissipation concurrent with
diffusion and if this is eliminated the system becomes stric
conserving. This refinement might be helpful when looki
for hidden conservation laws using Lyapunov spectra,9 nu-
meric or experimental.

All three types of perturbation studied above are seen
have an effect on the phase diagram. Fore50 phase dia-
grams in three-dimensional parameter spaces (a,b,u) and
(a,b,u0) obviously coincide. Numerical data for all types
perturbation studied suggest that a gradual increase of
parametere makes the phase diagram of the perturbed s
tem change continuously. The boundaries of the phases s
making some of the phases shrink or completely disapp
~e.g., sufficiently strong perturbation of any type oblitera
the phase L2!. Other phases may expand as the stability
their basic state is enhanced~as is the case for the phase L
CHAOS, Vol. 7,
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and the uniform state in the presence of a ‘‘dissipative’’ p
turbation!. We can say that, although the phase diagram
sensitive to the violations of the conservation law, it is rob
with respect to sufficiently weak violations.

Since the changes in the phase diagram provoked
perturbations are found to be continuous, it is reasonabl
expect that the phase transitions which were 1-order in
conserving system will remain 1-order after a perturbation
imposed. This leaves us an opportunity to observe how
characteristic exponents change with increasing perturba
In our model the continuous phase transition at the bound
T2–L1 seems to be a promising point of investigation. N
merical data we have at the moment does not allow us
answer an important question of whether the universa
classes change if the conservation law is violated, but
plan to return and investigate this later in more detail.

IX. CONCLUSIONS

We have systematically investigated the properties o
coupled map lattice with dynamics constructed to satisf
conservation law and to show spatiotemporal chaos.

The conserved quantity provides an additional cont
parameter: as its value is changed, a rich phase diagram
a number of phase transitions between ordered and d
dered states is found. Both continuous and discontinu
transitions occur, as in coupled map lattices without a c
servation law. The basic structure of the phase diagram
given by the linear stability boundaries of the order
phases, although near the discontinuous transitions bistab
may occur. Increasing the non-linearity, determined by
parameterb @see fig.1~b!#, renders the spatially uniform or
dered phase~phaseL1) unstable. For 0,u,1/2 the linear
instability of the uniform state occurs via spatial period do
bling ~the zone boundary mode goes unstable!. For
a,u,1/2 the transition is immediately to a chaotic sta
which takes the form of an increasing number of ‘‘turb
lent’’ regions of roughly fixed size~defects! moving through
the ‘‘laminar’’ background. This transition is continuou
with a diverging correlation length and other scaling a
proaching the ordered state. For 0,u,a the transition to
chaos is through a series of two subharmonic bifurcatio
passing first to an intermediate 2-cycle state~theL2 phase!.
The onset of chaos fromL2 is hysteretic. A complete sub
harmonic cascade is not observed. For 1/2,u,1 the insta-
bility of the L1 phase occurs through modes of all wa
vectors going unstable together, and the appearance of c
is also hysteretic with frozen chaotic domains developing

As in thermodynamic systems, the phase transitions
be conveniently described by the use of order paramet
although since we are concerned with the growth ofdisorder
the choice of the appropriate order parameter here is by
means obvious. In the case of the continuous transition
find that a number of proposed order parameters scale
distance to the transition point, thus allowing the evaluat
of critical exponents, which may help to pin down wheth
universality classesfor the onset of spatiotemporal chaos e
ist. An interesting question is whether the conservation la
No. 2, 1997
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330 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps
which clearly affects the dynamic correlations, also chan
the exponents and the universality class~if such a classifica-
tion exists! of the phase transitions. The transition fromL1
to T2 in the conserving model and in perturbed versio
where the conservation law is weakly violated should p
vide a good arena for investigating this.

A symbolic description of the dynamics, reducing t
complex states to regions of laminar~ordered! and turbulent
~fluctuating! regions is useful in describing the chaotic sta
near the transitions. In particular we see that the onse
chaos always happens in the form of turbulent regions gra
ally spreading over the laminar background. Whenever
chaos appears to grow continuously, the turbulent fluct
tions appear in the form of turbulent defects, usually pro
gating across the system, with sizel t of order a few lattice
spacings. Similar results were obtained by Kaneko12 for the
non-conserving CML, although in our case there seems to
a stronger tendency for the defects to propagate with c
stant velocity.

We have also studied the Lyapunov eigenvalues
eigenvectors of the chaotic states. A conspicuous featur
conserving models is the singularity in the density
Lyapunov exponents aroundl50. There is growing evi-
dence that the singularity is associated with the existenc
Lyapunov eigenvectors that are labelled by the wave ve
kW for small k—the singularity is then the usual Van Hov
singularity coming from mode counting and the assumpt
of a smooth spectrum at smallk, i.e., l5l02Def fk

2. This
leads immediately to aul2l0u21/2 singularity in the density
of exponents.

Some evidence for this idea comes from the work
Bohr et al.9 who studied some models where the Lyapun
spectrum can be exactly calculated, and in which the eig
vectors are trivially Fourier modes, since the Jacobian is
dependent of the dynamic variables. In these models the
gularity can occur at non-zerol0, and the singularity may be
to larger or smallerl.

For the conserving~and non-trivial! maps we have stud
ied, the labelling of the Lyapunov eigenvectors by the wa
vector and the expression for the Lyapunov spectrum, w
l050 and D positive, is suggested by a hydrodynam
analysis, which associates the Lyapunov eigenvectors
the diffusively decaying modes given by a long wavelen
Langevin description. The Fourier power spectrum of
Lyapunov eigenvectors provides support for this expla
tion: for small negativel the power spectrum correspondin
to them-th eigenvaluelm is indeed strongly peaked aroun
a smallk with k } (m2m0)2p/L with lm0

50. Note how-
ever that the diffusion constant estimated from the Lyapu
spectrum may be significantly different from other estimat
CHAOS, Vol. 7,
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and the proportionality constanta is greater than 0.5 which
would be the value from simply counting the Fourier mod
Indeed, there is also a concentration of spectral power
wards smallk on the positivel side, with a peak wave
vector which again appears to scale linearly withm02m for
m sufficiently close tom0. Hence the long wavelength Fou
rier modes contribute appreciably to the Lyapunov vect
corresponding to small positive as well as negative ex
nents, which explains the deviation ofa from 0.5. There is
no understanding from the hydrodynamic approach of
positive eigenvalue long wavelength modes and associ
singularity in the density of exponents.

Adding the linear perturbation~75! makesl0 non-zero,
but kW remains a good label. Non-linear perturbations th
eliminate the conservation law however destroy the singu
ity, and presumably in this casekW is no longer a good label
Thus the conservation law appears to be a sufficient co
tion for Lyapunov spectrum singularity, but a comple
quantitative understanding of this association rema
lacking.
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