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Non-normality and the localized control of extended systems
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The idea of controlling the dynamics of spatially extended systems using a small number of localized
perturbations is very appealing—such a setup is easy to implement in practice. However, when the distance
between controllers generating the perturbations becomes large, control fails due to extreme sensitivity of the
system to noise. This sensitivity results from strong non-normality of the evolution operator governing the
dynamics of disturbances in the controlled system. We investigate how non-normality can arise in an originally
normal system and study how the noise amplification depends on the distance between controllers.
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Control of spatially extended systems has recentlyform target stat¢l], so we will break the symmetry by im-
emerged as a problem of fundamental interest as well agosing certain boundary conditions. Specifically, we will re-
significant technological importance. Numerous investiga-quire that¢ vanishes on one of the boundaries, edf(.0.t)
tions have shown the possibility of controlling a system by=0, reducing the minimal number of controllers to one. The
applying a feedback at every point in space. However, thenly controller will be placed at the opposite boundary,
practical implementation of such control algorithms is often=1. With this arrangement, the lengtiof the system plays
prohibitively expensive and sometimes impossible. As a rethe role of the distance between multiple controllers in a
sult, increasing attention is being devoted to localized consystem of larger size. We choose the feedback law to be of
trol, where feedback is applied only at a few spatial loca-the form
tions. Previous studies have shown that the minimal number
of such control locations depends both on the symmetry of [
the systenj1] and the strength of noige,3]. o' (I ,t)=f K(y)o(y,t)dy, (2

The failure of localized control for large separation be- 0
tween controllers was attributed to the phenomenon of non-
normality in the evolution operatdB]. For non-normal sys- such that the control signal depends on the statef the
tems, stability becomes a poor predictor of short termsystem on the whole domaifthis condition can be easily
dynamicg4]. Strong non-normality, which makes the systemrelaxed. The feedback gaii(y) describes how each point
extremely sensitive to noise, was previously identified as thénside the domain contributes to the feedback.
mechanism that provokes the transition to turbulence in un- The spectrum of the unperturbed linearized system is dis-
controlled systems, such as pipe or channel flf5y6]. The  crete with eigenvalues and eigenfunctions given by
latter systems are non-normal due to a large mean flow,
whereas generic extended systems have no mean flow and )\n=1—qﬁ, fr(x)=sin(g,x), ()]
are normal for typical boundary conditions. In these normal

systems, non-normality arises as a result of control. StUdie\?/hereq —(n—1/2)m/l andn=1,2 These eigenfunc-
of non-normality caused by localized contf@] have so far tions arg normal, as expected ’ar'u.j.f.o.rm a convenient basis

begn I|m|teq.to _the interplay between nonlmeanty and thefor the stability analysis of the perturbed system. Dropping
noise amplification due to non-normallty, rather than tr.wthe cubic term in Eq(1) and projecting the remainder onto
emergence of non-normality itself. Our goals here are to N3 e basis(f,}, we obtain

vestigate how non-normality arises in an originally normal i

system and to study how non-normality leads to noise am-

plification, which determines the limits of localized control. s n . _
Let us consider the Ginzburg-Landau equatiGiE) Pp=Ny®p—(-1) mzfl Kn®n=(M®)y, @)
) _ ” 3
P, 1) =¢(x, )+ ¢"(X,1) = $*(x,1) (1) where®, andK, are the Fourier coefficients af andK,

as a prototypical system. Although simple enough to allow 5 1
analytical treatment, the GLE describes a very generic q)n:_J H(X)sin(g,x)dx,
reaction-diffusion system. We, therefore, expect the main re- I Jo
sults of the following analysis to apply to the most extended
dynamical systems of this type. 2 (I
The unbounded systefit) possesses an unstable uniform Kn=|—f K(x)sin(g,x)dx, (5)
steady stateb=0. Our control objective is to make this state 0
stable. The symmetry of an unbounded system requires at
least two independent controllers in order to control a uni-and
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—Ky MKy Ky % 5 .
M= RE (6) —K, oo

K1 Kz A3tKjy » max (K,p(x) o

1071 o maXX(KLQR(X))

The control problem for the partial differential equatici)

is thus reduced to finding an infinite set of coefficieKts,

which will make the matrixV stable. 10°
It turns out that the structure & simplifies the problem

remarkably. Suppose we take arxn truncation ofM by

discarding all rows and columns except the finstSetting

the eigenvalues of the truncated mathk, to a sequence 10l L

Ni,N5, ...\, is then equivalent to solving a system mof 0 15 i 20 2
equations linear irK,’s. In particular, one can change the
first m=1, ... s eigenvalues from\, to A/, and leave the FIG. 1. Strength of feedback as a function of the dizd the
rest unchanged by setting system. The maximum df(x) in real space is compared with the
Fourier coefficient&k; andK, calculated by using E(9).
ﬁ (Ar=\') correspond to the average of the fissﬂigenvaluefs prodyced
pop Mo by LQR.) Both control laws show the same scalingofvith
KE’:): T m-1 S ) (7) l. ] ]
H (o= Ap) H (A= \y) The exponential growth of the control signal suggests
ps1 0 P TS, ™ TP transient behavior, a sign of non-normality. Indeed, a small

initial disturbance inside the domain will create a large con-
for m=s and zero otherwise. Since the right-hand side doe#ol perturbation at the right boundany=1. If the feedback
not depend on the size of the truncated maix, the result  is designed properly, this perturbation will eventualafter
also holds for the full matriM, so we can drop the index propagating through the systeroancel the initial distur-
This is a very important result because it allows us to calcubance, thereby making the system asymptotically stable.
late Fourier coefficients odny stabilizing feedback gain. It However, asymptotic decay will be preceded by a transient
also allows us to determine how these coefficients scale witwhose magnitude grows with the feedback gdinrNumeri-
the size of the systern Substituting Eq(3) into Eq.(7) and  cal simulation of the linearized GLE does indeed show a
after some algebra, we obtain large transientsee Fig. 2.
The scaling of both the transient amplification and the

s control signal can also be understood qualitatively. Since the

|\ 26-1) (2m—1) H (Nm—Ap) propagation of perturbations is diffusive, it will take a time
K= — <_ p=1 _ (8)  roughly proportional to the size of the systérfor the con-
™ (stm—1)!(s—m)! trol signal to travel from the right boundary to the left one,

. suppressing the disturbances inside the domain. Since the
~ To make the matriM stable we only need to change the system is locally unstable, a disturbance near the left bound-
first s positive eigenvalues, wheis equal to the integer ary will grow uncontrolled during this time interval. The
part of I/w+1/2. In particular, in the limit\;=N;=---  exponential growth of the disturbance will result in its am-
=N¢=A, whereA is some negative number, the product in plification by a factor exp(,7)~exp(l). To suppress the
the numerator of Eq(8) reduces to X,,— A)3. Expressing
throughl, we see that the coefficienis,, grow exponentially
fast withl. The leading order behavior for largjés given by

)

This exponential growth is clearly seen in Fig. 1. Both here
and throughout the paper, we use and compare two differen

o(/2,1)

|
Km~exp{;[ 2+In(Ay—A)+0O

control methods. In linear-quadratitQR) control [7], the 10020 40 60 80 100
system(4) is truncated to 64 Fourier modes and a seKgf t
that minimizes a quadratic form & is sought numerically. FIG. 2. The magnitude of the disturbance in the middle of a

In pole placementPP), the feedback gain is calculated di- jarge domain) =25, under LQR control. Exponential asymptotic
rectly from Eq.(8), where we change all unstable eigenval-decay is preceded by a transient, amplifying the initial disturbance
ues toA=—0.5 and leave the stable ones unchang@te (white noise with standard deviatiom=10"1% by six orders of
choice of A is somewhat arbitrary and is chosen to roughlymagnitude.
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amplified disturbance, we need to apply a control perturba-
tion at least as large as the disturbance itself, which require:
exponentialwith 1) growth in the feedback gain.

Next, let us consider how non-normality arises in our sys-
tem. The evolution matrix for the controlled dynamics can be ¢
written in the formM=A+BK', whereA is the diagonal
(and hence normammatrix that describes the dynamics of the
unperturbed system\,,=\,, andB andK are vectors with
elements ¢1)™ ! and K,,, respectively. ClearlyBK" is -1
not a normal matrix so the suf+BK" is not normal either. 0 5 10 15 20 25
In fact, when all unstable eigenvalues are chosen equal, the
matrix M is not even diagonalizable. In that case, one can g, 3. First five eigenfunctions of the controlled system Ifor

convertM into the Jordan normal form = 25. The evolution matri# was calculated using LQR and has all
eigenvalues distinct.
J; 0
JM)=S"MS= ) (10
0 J; small strip of negative values, say-€,0). Therefore, the

. . L increase in the system size will force progressively more
with J; being ansxs Jordan block with eigenvalu, J, a eigenvalues to lie in this strip, making the difference between

e ot VAo en. o ot yUESESSe eigenalies Sk st as asshs we
. . ) ave seen previously, settisgigenvalues equal produces an
eigenvectors oM corresponding to the Jordan blodk co- P Y &9 qua’p

e . . sxs Jordan block, which causeseigenvectors to merge.
incide, e;=e,=---=ge5. The solution of the linear system g g

(4) in this case is constructed using the generalized eigenve Sinces is arbitrary, such merging will occur for any number
, , A 9 9 9 Bt eigenvectors corresponding to identical eigenvalues. As a
tors e;, such thatMe,=Aey+e, , for p=2,... s and

result, pairs of successive eigenvalues will continuously ap-

e;=e;. Specifically, proach each other, aligning the respective eigenvecfthe
s [s—p " continuity can be checked by a straightforward application of

B(t)= z c t_ exp(At)e! perturbation theory.Figure 3 shows that already for=25

i1 | m=o P Mml P the first five eigenfunction$,(x) = sin(g,x) of the controlled

system are very closely aligned: their wave numbers lie be-
tween those of the first and second stable eigenfunctions of
the uncontrolled systentjg= 8.5/ andq,o=9.57/I.

Finally, it is useful to derive the quantitative result for
wherecy,C,, ... are integration constants which have to betransient amplification,
chosen to satisfy the initial condition. The result for the in-
dividual Fourier coefficients can be written more conve-
niently using the elements of the transformation magix

+ > _CoexNph)ep, (12)

p=s+

_ @MWz
Y= e, oMl a3

s s—p {m
q)n(t):pzl Snp{ mE:O Cp+mH exp(At)

because this is the ultimate measure that determines when
- modal analysis and linear control break down. Let us again
+ _E S pCp EXP(Apt). (120 assume that all the unstable eigenvalues are made equal and
pmstl analyze the structure of the soluti@t2) more carefully. The

By looking at Eq.(11) or (12), one can clearly see that the transient occurs because each of the tertfign(!)exp(At)

solution ¢(x,t) grows as a polynomial of ordes— 1 before ~ first grow ast™ and then decay as exp(), reaching the

exponential decay at a rate finally takes over. maximal value at,,=—m/A. This maximal value is given
In the above analysis, we required the festigenvalues by

to be equal. What happens in the typical case when these

eigenvalues are close but not equal? First of all, as(8q.

shows, the coefficient&,, of the feedback gain will still (tm)mexp(At )~

grow exponentially with the size of the system. The matrix m! m

M will remain strongly non-normal, but will become diago-

nalizable. Therefore, all eigenvectors Mf will be distinct,

but the firsts will be closely aligned. This can be argued in so for small|A|, the term withm=s—1 dominates Eq(12).

the following way. SinceK,, quickly grows with increasing A good approximation for the transient amplificatigncan,

[N/, while the size of the largest possible perturbation istherefore, be obtained by picking the initial sta€0) that

usually severely restricted by practical limitations as well ascorresponds to setting,,= 6, s and calculating the maxi-

nonlinearities, the new eigenvalues have to be chosen in @mum of the ratio||®(t)||,/||®(0)|,,

(14

1
V2am|A|™
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where we only keep terms with=1. It should be noted that =~

the chosen initial state corresponds to a “near optimal” dis-  1¢?
turbance, rather than the “optimal” disturbance producing
the largest transient amplificatiga].

If the matrix S is normalized such th&; =1, it can be

shown that, for arbitrary, S, ;= 6, ; and 10 . | L
. 10""15"1' 20 25
o IL v 1)
S, =(—1)S*n (A1 —A)° k=2 (16) FIG. 4. Transient amplificatiory asa functio_n of. The squares
= An— A lf[ * ) ' show the values calculated numerically by using &d).
Y
k=2 ered. Second, Eq19) is the asymptotic result for Eq15)
Since allS, ; scale in the same way, E(L5) gives and is valid only in the limit of large (here forl>20). On
the other hand, the numerical accuracy in calculating the
[S14] matrix norm decreases rapidly withThis is, in fact, a nu-
Y |A|5‘1' 17 merical fingerprint of non-normality. The results found by

using standard numerical routines are getting rather inaccu-

In order to perform the calculation of the leading order be-rate for strongly non-normal matrices, e.g., for latgis our
havior of S;;, we assume that\=1—[(p—1/2)w/I]?,  case, also fof>20).

wherep is some integer, in which case E{.6) gives The large transient amplification makes the system ex-
1 | tremely susceptible to noise, as noise is amplified by feed-
1S4 (AM—A)> H(pts—1)! (18) back before being suppressed. In order for linear control to

L (p—s—1)!p(p—1)s!(s—1)! "

work, the magnitude of the nonlinear terms has to be smaller
) . than the magnitude of the linear terms. Comparison of their
We can now reexpress in terms of A thus, extrapolating  re|ative magnitude can be used to estimate when noise will
between the known expressions fois corresponding to in-  gtart to interfere with control. For instance, for cubic nonlin-

tegerp’s. At the leading order, we again obtain exponentlalemity in the GLE, using the argument of Egolf and Socolar

growth with the system size [3], we obtain that the largest magnitude of noiseolerated
Wil by linear control should scale likg~ %2 However, our nu-
y~exr{l— In A-1 +1n (at1) ] 1 (19) merical calculations produce different scaling. This disagree-
™ A (a—1)*" 1 | ment is currently under investigation.

To summarize, we have shown that the application of spa-

wherea=J1-A. tially localized control achieves stabilization by moving the

As Fig. 4 shows, the numerically calculated transient am-originally unstable wave numbers into a narrow region of the
plification factor does indeed grow exponentially fast and isstable band. As the size of the system grows, a progressively
rather insensitive to the way the feedback gain is calculatedarger number of originally unstable eigenfunctions become
The slope is seen to be slightly different from the one prestrongly aligned, increasing the degree of non-normality. In-
dicted by Eq.(19). This is to be expected. First, we only creasing non-normality leads to transient amplification which
consider the terms in Eq12), for which m=s—p. While  grows exponentially with the size of the system, thus impos-
that gives a correct leading order result for smjadll, for  ing strict limitations on the density of controllers required to
A=-0.5, the contribution froom=s—p—1 is about half control a system of given size in the presence of noise or
that fromm=s—p and more terms might need to be consid-truncation errors.
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