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Non-normality and the localized control of extended systems
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~Received 11 July 2002; published 30 December 2002!

The idea of controlling the dynamics of spatially extended systems using a small number of localized
perturbations is very appealing—such a setup is easy to implement in practice. However, when the distance
between controllers generating the perturbations becomes large, control fails due to extreme sensitivity of the
system to noise. This sensitivity results from strong non-normality of the evolution operator governing the
dynamics of disturbances in the controlled system. We investigate how non-normality can arise in an originally
normal system and study how the noise amplification depends on the distance between controllers.
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Control of spatially extended systems has recen
emerged as a problem of fundamental interest as wel
significant technological importance. Numerous investi
tions have shown the possibility of controlling a system
applying a feedback at every point in space. However,
practical implementation of such control algorithms is oft
prohibitively expensive and sometimes impossible. As a
sult, increasing attention is being devoted to localized c
trol, where feedback is applied only at a few spatial loc
tions. Previous studies have shown that the minimal num
of such control locations depends both on the symmetry
the system@1# and the strength of noise@2,3#.

The failure of localized control for large separation b
tween controllers was attributed to the phenomenon of n
normality in the evolution operator@3#. For non-normal sys-
tems, stability becomes a poor predictor of short te
dynamics@4#. Strong non-normality, which makes the syste
extremely sensitive to noise, was previously identified as
mechanism that provokes the transition to turbulence in
controlled systems, such as pipe or channel flows@5,6#. The
latter systems are non-normal due to a large mean fl
whereas generic extended systems have no mean flow
are normal for typical boundary conditions. In these norm
systems, non-normality arises as a result of control. Stu
of non-normality caused by localized control@3# have so far
been limited to the interplay between nonlinearity and
noise amplification due to non-normality, rather than t
emergence of non-normality itself. Our goals here are to
vestigate how non-normality arises in an originally norm
system and to study how non-normality leads to noise a
plification, which determines the limits of localized contro

Let us consider the Ginzburg-Landau equation~GLE!

ḟ~x,t !5f~x,t !1f9~x,t !2f3~x,t ! ~1!

as a prototypical system. Although simple enough to all
analytical treatment, the GLE describes a very gene
reaction-diffusion system. We, therefore, expect the main
sults of the following analysis to apply to the most extend
dynamical systems of this type.

The unbounded system~1! possesses an unstable unifor
steady statef50. Our control objective is to make this sta
stable. The symmetry of an unbounded system require
least two independent controllers in order to control a u
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form target state@1#, so we will break the symmetry by im
posing certain boundary conditions. Specifically, we will r
quire thatf vanishes on one of the boundaries, e.g.,f(0,t)
50, reducing the minimal number of controllers to one. T
only controller will be placed at the opposite boundary,x
5 l . With this arrangement, the lengthl of the system plays
the role of the distance between multiple controllers in
system of larger size. We choose the feedback law to b
the form

f8~ l ,t !5E
0

l

K~y!f~y,t !dy, ~2!

such that the control signal depends on the statef of the
system on the whole domain~this condition can be easily
relaxed!. The feedback gainK(y) describes how each poin
inside the domain contributes to the feedback.

The spectrum of the unperturbed linearized system is
crete with eigenvalues and eigenfunctions given by

ln512qn
2 , f n~x!5sin~qnx!, ~3!

whereqn5(n21/2)p/ l and n51,2, . . . . These eigenfunc-
tions are normal, as expected, and form a convenient b
for the stability analysis of the perturbed system. Dropp
the cubic term in Eq.~1! and projecting the remainder ont
the basis$ f n%, we obtain

Ḟn5lnFn2~21!n (
m51

`

KmFm[~MF!n , ~4!

whereFn andKn are the Fourier coefficients off andK,

Fn5
2

l E0

l

f~x!sin~qnx!dx,

Kn5
2

l E0

l

K~x!sin~qnx!dx, ~5!

and
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M5S l11K1 K2 K3 •••

2K1 l22K2 2K3 •••

K1 K2 l31K3 •••

A A A �

D . ~6!

The control problem for the partial differential equation~1!
is thus reduced to finding an infinite set of coefficientsKm ,
which will make the matrixM stable.

It turns out that the structure ofM simplifies the problem
remarkably. Suppose we take ann3n truncation ofM by
discarding all rows and columns except the firstn. Setting
the eigenvalues of the truncated matrixMn to a sequence
l18 ,l28 , . . . ,ln8 is then equivalent to solving a system ofn
equations linear inKm’s. In particular, one can change th
first m51, . . . ,s eigenvalues fromlm to lm8 and leave the
rest unchanged by setting

Km
(n)52

)
p51

s

~lm2lp8!

)
p51

m21

~lp2lm! )
p5m11

s

~lm2lp!

, ~7!

for m<s and zero otherwise. Since the right-hand side d
not depend on the size of the truncated matrixMn , the result
also holds for the full matrixM, so we can drop the indexn.
This is a very important result because it allows us to cal
late Fourier coefficients ofany stabilizing feedback gain. I
also allows us to determine how these coefficients scale
the size of the systeml. Substituting Eq.~3! into Eq. ~7! and
after some algebra, we obtain

Km52S l

p D 2(s21) ~2m21!)
p51

s

~lm2lp8!

~s1m21!! ~s2m!!
. ~8!

To make the matrixM stable we only need to change th
first s positive eigenvalues, wheres is equal to the intege
part of l /p11/2. In particular, in the limitl185l285•••

5ls85L, whereL is some negative number, the product
the numerator of Eq.~8! reduces to (lm2L)s. Expressings
throughl, we see that the coefficientsKm grow exponentially
fast with l. The leading order behavior for largel is given by

Km;expF l

p H 21 ln~lm2L!1OS m2

l 2 D J G . ~9!

This exponential growth is clearly seen in Fig. 1. Both he
and throughout the paper, we use and compare two diffe
control methods. In linear-quadratic~LQR! control @7#, the
system~4! is truncated to 64 Fourier modes and a set ofKm
that minimizes a quadratic form inF is sought numerically.
In pole placement~PP!, the feedback gain is calculated d
rectly from Eq.~8!, where we change all unstable eigenv
ues toL520.5 and leave the stable ones unchanged.~The
choice ofL is somewhat arbitrary and is chosen to rough
06720
s

-

th

e
nt

-

correspond to the average of the firsts eigenvalues produced
by LQR.! Both control laws show the same scaling ofK with
l.

The exponential growth of the control signal sugge
transient behavior, a sign of non-normality. Indeed, a sm
initial disturbance inside the domain will create a large co
trol perturbation at the right boundary,x5 l . If the feedback
is designed properly, this perturbation will eventually~after
propagating through the system! cancel the initial distur-
bance, thereby making the system asymptotically sta
However, asymptotic decay will be preceded by a transi
whose magnitude grows with the feedback gainK. Numeri-
cal simulation of the linearized GLE does indeed show
large transient~see Fig. 2!.

The scaling of both the transient amplification and t
control signal can also be understood qualitatively. Since
propagation of perturbations is diffusive, it will take a timet
roughly proportional to the size of the systeml for the con-
trol signal to travel from the right boundary to the left on
suppressing the disturbances inside the domain. Since
system is locally unstable, a disturbance near the left bou
ary will grow uncontrolled during this time interval. Th
exponential growth of the disturbance will result in its am
plification by a factor exp(l1t);exp(bl). To suppress the

FIG. 1. Strength of feedback as a function of the sizel of the
system. The maximum ofK(x) in real space is compared with th
Fourier coefficientsK1 andK2 calculated by using Eq.~9!.

FIG. 2. The magnitude of the disturbance in the middle o
large domain,l 525, under LQR control. Exponential asymptot
decay is preceded by a transient, amplifying the initial disturba
~white noise with standard deviations510210) by six orders of
magnitude.
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amplified disturbance, we need to apply a control pertur
tion at least as large as the disturbance itself, which requ
exponential~with l ) growth in the feedback gain.

Next, let us consider how non-normality arises in our s
tem. The evolution matrix for the controlled dynamics can
written in the formM5A1BK†, whereA is the diagonal
~and hence normal! matrix that describes the dynamics of th
unperturbed system,Amm5lm , andB andK are vectors with
elements (21)m11 and Km , respectively. Clearly,BK† is
not a normal matrix so the sumA1BK† is not normal either.
In fact, when all unstable eigenvalues are chosen equal
matrix M is not even diagonalizable. In that case, one c
convertM into the Jordan normal form

J~M !5S21MS5S J1 0

0 J2
D , ~10!

with J1 being ans3s Jordan block with eigenvalueL, J2 a
diagonal matrix withls11 ,ls12 , . . . on the diagonal, andS
the respective coordinate transformation. This means tha
eigenvectors ofM corresponding to the Jordan blockJ1 co-
incide, e15e25•••5es . The solution of the linear system
~4! in this case is constructed using the generalized eigen
tors ep8 , such thatMep85Lep81ep218 for p52, . . . ,s and
e185e1. Specifically,

F~ t !5 (
p51

s F (
m50

s2p

cp1m

tm

m! Gexp~Lt !ep8

1 (
p5s11

`

cp exp~lpt !ep , ~11!

wherec1 ,c2 , . . . are integration constants which have to
chosen to satisfy the initial condition. The result for the
dividual Fourier coefficients can be written more conv
niently using the elements of the transformation matrixS,

Fn~ t !5 (
p51

s

Sn,pF (
m50

s2p

cp1m

tm

m! Gexp~Lt !

1 (
p5s11

`

Sn,pcp exp~lpt !. ~12!

By looking at Eq.~11! or ~12!, one can clearly see that th
solutionf(x,t) grows as a polynomial of orders21 before
exponential decay at a rateL finally takes over.

In the above analysis, we required the firsts eigenvalues
to be equal. What happens in the typical case when th
eigenvalues are close but not equal? First of all, as Eq.~8!
shows, the coefficientsKm of the feedback gain will still
grow exponentially with the size of the system. The mat
M will remain strongly non-normal, but will become diago
nalizable. Therefore, all eigenvectors ofM will be distinct,
but the firsts will be closely aligned. This can be argued
the following way. SinceKm quickly grows with increasing
ulm8 u, while the size of the largest possible perturbation
usually severely restricted by practical limitations as well
nonlinearities, the new eigenvalues have to be chosen
06720
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small strip of negative values, say (2e,0). Therefore, the
increase in the system size will force progressively m
eigenvalues to lie in this strip, making the difference betwe
successive eigenvalues shrink at least as fast ase/ l . As we
have seen previously, settings eigenvalues equal produces a
s3s Jordan block, which causess eigenvectors to merge
Sinces is arbitrary, such merging will occur for any numbe
of eigenvectors corresponding to identical eigenvalues. A
result, pairs of successive eigenvalues will continuously
proach each other, aligning the respective eigenvectors.~The
continuity can be checked by a straightforward application
perturbation theory.! Figure 3 shows that already forl 525
the first five eigenfunctionsf k8(x)5sin(qk8x) of the controlled
system are very closely aligned: their wave numbers lie
tween those of the first and second stable eigenfunction
the uncontrolled system,q958.5p/ l andq1059.5p/ l .

Finally, it is useful to derive the quantitative result fo
transient amplification,

g[ max
t,F(0)

uuF~ t !uu2
uuF~0!uu2

5max
t

uuexp~Mt !uu2 ~13!

because this is the ultimate measure that determines w
modal analysis and linear control break down. Let us ag
assume that all the unstable eigenvalues are made equa
analyze the structure of the solution~12! more carefully. The
transient occurs because each of the terms (tm/m!)exp(Lt)
first grow as tm and then decay as exp(Lt), reaching the
maximal value attm52m/L. This maximal value is given
by

~ tm!m

m!
exp~Ltm!;

1

A2pmuLum
, ~14!

so for smalluLu, the term withm5s21 dominates Eq.~12!.
A good approximation for the transient amplificationg can,
therefore, be obtained by picking the initial stateF(0) that
corresponds to settingcm5dm,s and calculating the maxi-
mum of the ratiouuF(t)uu2 /uuF(0)uu2,

FIG. 3. First five eigenfunctions of the controlled system fol
525. The evolution matrixM was calculated using LQR and has a
eigenvalues distinct.
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g;!(
n51

s

Sn,1
2

(
n51

s

Sn,s
2

max
t

ts21eLt

~s21!!
, ~15!

where we only keep terms withp51. It should be noted tha
the chosen initial state corresponds to a ‘‘near optimal’’ d
turbance, rather than the ‘‘optimal’’ disturbance produci
the largest transient amplification@4#.

If the matrix S is normalized such thatS1,s51, it can be
shown that, for arbitraryn, Sn,s5dn,1 and

Sn,15~21!s1n
~l12L!s

ln2L

)
k52

s

~lk2L!

)
k52

s

~l12lk!

. ~16!

Since allSn,1 scale in the same way, Eq.~15! gives

g;
uS1,1u

uLus21
. ~17!

In order to perform the calculation of the leading order b
havior of S1,1, we assume thatL512@(p21/2)p/ l #2,
wherep is some integer, in which case Eq.~16! gives

uS1,1u5
~l12L!s21~p1s21!!

~p2s21!! p~p21!s! ~s21!!
. ~18!

We can now reexpressp in terms ofL thus, extrapolating
between the known expressions forL ’s corresponding to in-
tegerp’s. At the leading order, we again obtain exponent
growth with the system size

g;expF l

p H ln
L21

L
1 ln

~a11!a11

~a21!a21J G , ~19!

wherea[A12L.
As Fig. 4 shows, the numerically calculated transient a

plification factor does indeed grow exponentially fast and
rather insensitive to the way the feedback gain is calcula
The slope is seen to be slightly different from the one p
dicted by Eq.~19!. This is to be expected. First, we on
consider the terms in Eq.~12!, for which m5s2p. While
that gives a correct leading order result for smalluLu, for
L520.5, the contribution fromm5s2p21 is about half
that fromm5s2p and more terms might need to be cons
ev

ll
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ered. Second, Eq.~19! is the asymptotic result for Eq.~15!
and is valid only in the limit of largel ~here forl .20). On
the other hand, the numerical accuracy in calculating
matrix norm decreases rapidly withl. This is, in fact, a nu-
merical fingerprint of non-normality. The results found b
using standard numerical routines are getting rather inac
rate for strongly non-normal matrices, e.g., for largel ~in our
case, also forl .20).

The large transient amplification makes the system
tremely susceptible to noise, as noise is amplified by fe
back before being suppressed. In order for linear contro
work, the magnitude of the nonlinear terms has to be sma
than the magnitude of the linear terms. Comparison of th
relative magnitude can be used to estimate when noise
start to interfere with control. For instance, for cubic nonli
earity in the GLE, using the argument of Egolf and Soco
@3#, we obtain that the largest magnitude of noises tolerated
by linear control should scale likeg23/2. However, our nu-
merical calculations produce different scaling. This disagr
ment is currently under investigation.

To summarize, we have shown that the application of s
tially localized control achieves stabilization by moving th
originally unstable wave numbers into a narrow region of
stable band. As the size of the system grows, a progressi
larger number of originally unstable eigenfunctions beco
strongly aligned, increasing the degree of non-normality.
creasing non-normality leads to transient amplification wh
grows exponentially with the size of the system, thus imp
ing strict limitations on the density of controllers required
control a system of given size in the presence of noise
truncation errors.

FIG. 4. Transient amplificationg as a function ofl. The squares
show the values calculated numerically by using Eq.~13!.
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