Problem 1

(a) The dimensions \(v \), \(L \), and \(\nu \) are \([v] = LT^{-1}\), \([L] = L\), \([\nu] = L^2T^{-1}\), so the dimension of the Reynolds number \(R \) is:

\[
[R] = \frac{[v][L]}{[T]} = \frac{LT^{-1} \cdot L}{L^2T^{-1}} = 1,
\]

i.e., \(R \) is dimensionless.

(b) The speed of the airflow over the wing is \(v = 500 \text{ km/h} \), the characteristic length scale (wing chord or width) is \(L \approx 2.5 \text{ m} \), and the viscosity of air is \(\nu = 1.5 \times 10^{-5} \text{ m}^2/\text{s} \). The corresponding Reynolds number is

\[
R = \frac{vL}{\nu} = \frac{500 \text{ km/h} \cdot 2.5 \text{ m}}{1.5 \times 10^{-5} \text{ m}^2/\text{s} \cdot 3600 \text{ s/km}} = 2.31 \times 10^7,
\]

which is much larger than \(R_c = 1000 \), i.e., the flow is highly turbulent.

(c) For the airflow around human foot we estimate \(v \approx 1 \text{ m/s} \), \(L \approx 0.3 \text{ m} \), and \(\nu = 1.5 \times 10^{-5} \text{ m}^2/\text{s} \). The corresponding Reynolds number is

\[
R = \frac{vL}{\nu} = \frac{1 \text{ m/s} \cdot 0.3 \text{ m}}{1.5 \times 10^{-5} \text{ m}^2/\text{s}} = 2 \times 10^4,
\]

which is larger than \(R_c = 1000 \), i.e., the flow is turbulent.

(d) Flipping a coin imparts it a velocity of order \(v = 3 \text{ m/s} \) and rotational frequency of order \(f = 20 \text{ Hz} \). The radius of a coin is about \(r = 0.01 \text{ m} \) (so \(L = 2r = 0.02 \text{ m} \)). The velocity of the edges relative to the center of mass is \(2\pi fr = 1.2 \text{ m/s} \), comparable to \(v \), so rotation would not change the Reynolds number significantly. We therefore find

\[
R = \frac{vL}{\nu} = \frac{3 \text{ m/s} \cdot 0.02 \text{ m}}{1.5 \times 10^{-5} \text{ m}^2/\text{s}} = 4 \times 10^3,
\]

which is larger than \(R_c = 1000 \), i.e., the flow is weakly turbulent and can affect the outcome of a coin toss.

(e) The blood is ejected by the ventricles, each of which makes up about a quarter of the total volume of the heart. The heart is about \(12 \times 8 \times 6 \text{ cm} \) in size, so the volume of a ventricle is about

\[
V_0 \approx \frac{12 \text{ cm} \cdot 8 \text{ cm} \cdot 6 \text{ cm}}{4} = 1.5 \times 10^{-4} \text{ m}^3.
\]

We can assume that about 50% of this volume of blood is ejected per contraction, i.e., the blood volume ejected is \(V \approx 7 \times 10^{-5} \text{ m}^3 \). The heart contracts about 75 times per minute, i.e., with frequency \(f \approx 1.25 \text{ Hz} \). The radius of the heart valve is \(r = 1 \text{ cm} \) (about the same as the radius of the aorta), so its the cross-section is

\[
A \approx \pi r^2 \approx 2 \times 10^{-4} \text{ m}^2,
\]

and the velocity of the blood through the valve is

\[
v \approx \frac{Vf}{A} \approx 0.3 \text{ m/s}.
\]

The corresponding Reynolds number is

\[
R = \frac{v \cdot 2r}{\nu} = \frac{0.3 \text{ m/s} \cdot 0.02 \text{ m}}{3 \times 10^{-6} \text{ m}^2/\text{s}} = 2000,
\]
which is larger than $R_c = 1000$, i.e., the flow is weakly turbulent.

The arteries are a few millimeters wide, so we can take $r \approx 2$ mm. The velocity of the blood flow through the arteries is comparable to that through the aorta (and the heart valve), since the total cross-sectional area of the arteries is about the same as that of the aorta. Hence, in the arteries

$$R = \frac{v \cdot 2r}{\nu} = \frac{0.3 \text{ m/s} \cdot 0.004 \text{ m}}{3 \times 10^{-6} \text{ m}^2/\text{s}} = 400,$$

which is less than $R_c = 1000$, i.e., the flow is laminar.

(f) For the sound to be generated, the air flow must be turbulent (or at least unsteady), so

$$v > \frac{R_c \nu}{L} = \frac{1000 \cdot 1.5 \times 10^{-5} \text{ m}^2/\text{s}}{0.002 \text{ m}} = 7.5 \text{ m/s}.$$

Problem 2

(a) Saddle-node bifurcation $\dot{x} = f(x) = r - x^2$. The fixed points are $x^* = \pm \sqrt{r}$ (only for $r \geq 0$). Stability requires $f'(x^*) < 0$. Since $f'(x) = -2x$, $x^* = \sqrt{r}$ is stable and $x^* = -\sqrt{r}$ is unstable.

(b) Supercritical pitchfork bifurcation $\dot{x} = f(x) = rx - x^3$. The fixed points are $x^* = 0$ (for all r) and $\pm \sqrt{r}$ (for $r > 0$). We have $f'(x) = r - 3x^2$, so $x^* = 0$ is stable for $r < 0$, unstable for $r > 0$. The fixed points $x^* = \pm \sqrt{r}$ are both stable, since $f'(x^*) = -2r < 0$ for both.

(c) Subcritical pitchfork bifurcation $x = rx + x^3$. The fixed points are $x^* = 0$ (for all r) and $\pm \sqrt{-r}$ (for $r < 0$). We have $f'(x) = r + 3x^2$, so $x^* = 0$ is stable for $r < 0$, unstable for $r > 0$. Fixed points $x^* = \pm \sqrt{-r}$ are unstable, since $f'(x^*) = -2r > 0$ for both.
(d) Transcritical bifurcation $x = rx - x^2$. The fixed points are $x^* = 0, r$ for all r. We have $f'(x) = r - 2x$, so $x^* = 0$ is stable for $r < 0$, unstable for $r > 0$. For $x^* = r$ we have $f'(x^*) = -r$, so this fixed point is unstable for $r < 0$, stable for $r > 0$.

Problem 3

(a) Since $u(x) = u_0$, we have $u_x = 0$ and

$$F[u_0 + h] - F[u_0] = (u_0 + h)(u_0 + h)_x - u_0(u_0)_x$$
$$= uh_x + hh_x$$
$$\equiv J[h] + O(h^2), \quad (1)$$

so that

$$J = u_0 \partial_x. \quad (2)$$

(b) Since $u(x) = u_0$, we have $\nabla u = 0$ and

$$F[u_0 + h] - F[u_0] = \nabla^2 (u_0 + h)^2 - \nabla^2 u_0^2$$
$$= \nabla \cdot \nabla (u_0^2 + 2u_0h + h^2)$$
$$= \nabla \cdot (2u_0 \nabla h + 2h \nabla u_0 + \nabla h^2)$$
$$= 2u_0 \nabla^2 h + \nabla^2 h^2$$
$$\equiv J[h] + O(h^2) \quad (3)$$

so that

$$J = 2u_0 \nabla^2. \quad (4)$$
(c) Since $\mathbf{u}_0(x) = \mathbf{u}_0$, we have $\partial_i u_j = 0$ for $i, j = 1, 2, 3$ and

$$F[\mathbf{u}_0 + \mathbf{h}] - F[\mathbf{u}_0] = (\mathbf{u}_0 + \mathbf{h}) \cdot \nabla (\mathbf{u}_0 + \mathbf{h}) - \mathbf{u}_0 \cdot \nabla \mathbf{u}_0$$

$$= (\mathbf{u}_0 + \mathbf{h}) \cdot \nabla \mathbf{h}$$

$$= \mathbf{u}_0 \cdot \nabla \mathbf{h} + \mathbf{h} \cdot \nabla \mathbf{h}$$

$$\equiv J[\mathbf{h}] + O(h^2) \quad (5)$$

so that

$$J = \mathbf{u}_0 \cdot \nabla. \quad (6)$$